GLM-4模型推理过程中"too many values to unpack"错误分析与解决方案
在部署和使用THUDM/GLM-4大语言模型进行推理时,许多开发者近期遇到了一个共同的错误:"ValueError: too many values to unpack (expected 2)"。这个错误出现在模型生成文本的过程中,特别是在调用model.generate()方法时。本文将深入分析这个问题的根源,并提供详细的解决方案。
问题现象
当开发者尝试使用GLM-4模型进行文本生成时,系统会在modeling_chatglm.py文件的_update_model_kwargs_for_generation方法中抛出异常。具体错误发生在以下代码段:
cache_name, cache = self._extract_past_from_model_output(
outputs, standardize_cache_format=standardize_cache_format
)
错误提示表明,程序期望接收两个返回值,但实际上接收到的值数量不匹配。值得注意的是,这个问题并非一直存在,而是在近期突然出现的,即使环境配置和代码没有变化也会发生。
问题根源
经过分析,这个问题与Hugging Face Transformers库的版本兼容性有关。GLM-4模型在近期进行了更新,对模型内部的状态管理机制进行了调整,导致与某些版本的Transformers库不兼容。具体来说:
_extract_past_from_model_output方法的返回值结构发生了变化- 新旧版本的Transformers库对模型状态的处理方式存在差异
- 模型缓存机制(cache)的格式要求发生了变化
解决方案
要解决这个问题,开发者可以采取以下步骤:
1. 升级Transformers库版本
将Hugging Face Transformers库升级到4.42.4或更高版本:
pip install transformers==4.42.4
2. 重新加载模型
升级库后,需要重新加载GLM-4模型:
from transformers import AutoModel, AutoTokenizer
model = AutoModel.from_pretrained("THUDM/GLM-4-9b-chat", trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained("THUDM/GLM-4-9b-chat", trust_remote_code=True)
3. 检查CUDA环境
确保CUDA环境与PyTorch版本兼容。推荐使用以下配置:
- CUDA 12.1
- PyTorch 2.3.0+
4. 完整示例代码
以下是修正后的完整推理代码示例:
query = "你好"
device = "cuda" if torch.cuda.is_available() else "cpu"
inputs = tokenizer.apply_chat_template(
[{"role": "user", "content": query}],
add_generation_prompt=True,
tokenize=True,
return_tensors="pt",
return_dict=True
).to(device)
gen_kwargs = {
"max_length": 2500,
"do_sample": True,
"top_k": 1
}
with torch.no_grad():
outputs = model.generate(**inputs, **gen_kwargs)
outputs = outputs[:, inputs['input_ids'].shape[1]:]
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
torch.cuda.empty_cache()
注意事项
- 如果使用Databricks环境,建议使用Runtime 15.3 ML或更高版本
- 确保所有相关的依赖库版本一致,特别是PyTorch和Transformers
- 在模型加载前清空GPU缓存,避免内存不足的问题
- 如果问题仍然存在,可以尝试完全卸载后重新安装所有依赖
总结
"too many values to unpack"错误主要是由于GLM-4模型更新与Transformers库版本不兼容导致的。通过升级Transformers库到最新版本,并确保环境配置正确,可以有效解决这个问题。大语言模型的部署和使用过程中,保持依赖库的版本更新是非常重要的最佳实践。
希望本文能帮助开发者顺利解决GLM-4模型推理过程中遇到的问题。如果在实施上述解决方案后仍有疑问,建议查阅官方文档或寻求社区支持。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00