GLM-4模型推理过程中"too many values to unpack"错误分析与解决方案
在部署和使用THUDM/GLM-4大语言模型进行推理时,许多开发者近期遇到了一个共同的错误:"ValueError: too many values to unpack (expected 2)"。这个错误出现在模型生成文本的过程中,特别是在调用model.generate()
方法时。本文将深入分析这个问题的根源,并提供详细的解决方案。
问题现象
当开发者尝试使用GLM-4模型进行文本生成时,系统会在modeling_chatglm.py
文件的_update_model_kwargs_for_generation
方法中抛出异常。具体错误发生在以下代码段:
cache_name, cache = self._extract_past_from_model_output(
outputs, standardize_cache_format=standardize_cache_format
)
错误提示表明,程序期望接收两个返回值,但实际上接收到的值数量不匹配。值得注意的是,这个问题并非一直存在,而是在近期突然出现的,即使环境配置和代码没有变化也会发生。
问题根源
经过分析,这个问题与Hugging Face Transformers库的版本兼容性有关。GLM-4模型在近期进行了更新,对模型内部的状态管理机制进行了调整,导致与某些版本的Transformers库不兼容。具体来说:
_extract_past_from_model_output
方法的返回值结构发生了变化- 新旧版本的Transformers库对模型状态的处理方式存在差异
- 模型缓存机制(cache)的格式要求发生了变化
解决方案
要解决这个问题,开发者可以采取以下步骤:
1. 升级Transformers库版本
将Hugging Face Transformers库升级到4.42.4或更高版本:
pip install transformers==4.42.4
2. 重新加载模型
升级库后,需要重新加载GLM-4模型:
from transformers import AutoModel, AutoTokenizer
model = AutoModel.from_pretrained("THUDM/GLM-4-9b-chat", trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained("THUDM/GLM-4-9b-chat", trust_remote_code=True)
3. 检查CUDA环境
确保CUDA环境与PyTorch版本兼容。推荐使用以下配置:
- CUDA 12.1
- PyTorch 2.3.0+
4. 完整示例代码
以下是修正后的完整推理代码示例:
query = "你好"
device = "cuda" if torch.cuda.is_available() else "cpu"
inputs = tokenizer.apply_chat_template(
[{"role": "user", "content": query}],
add_generation_prompt=True,
tokenize=True,
return_tensors="pt",
return_dict=True
).to(device)
gen_kwargs = {
"max_length": 2500,
"do_sample": True,
"top_k": 1
}
with torch.no_grad():
outputs = model.generate(**inputs, **gen_kwargs)
outputs = outputs[:, inputs['input_ids'].shape[1]:]
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
torch.cuda.empty_cache()
注意事项
- 如果使用Databricks环境,建议使用Runtime 15.3 ML或更高版本
- 确保所有相关的依赖库版本一致,特别是PyTorch和Transformers
- 在模型加载前清空GPU缓存,避免内存不足的问题
- 如果问题仍然存在,可以尝试完全卸载后重新安装所有依赖
总结
"too many values to unpack"错误主要是由于GLM-4模型更新与Transformers库版本不兼容导致的。通过升级Transformers库到最新版本,并确保环境配置正确,可以有效解决这个问题。大语言模型的部署和使用过程中,保持依赖库的版本更新是非常重要的最佳实践。
希望本文能帮助开发者顺利解决GLM-4模型推理过程中遇到的问题。如果在实施上述解决方案后仍有疑问,建议查阅官方文档或寻求社区支持。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++097AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
项目优选









