AWS Deep Learning Containers发布v1.0-djl-0.32.0-inf-lmi-14.0.0版本
AWS Deep Learning Containers是亚马逊云科技提供的一套预配置的深度学习容器镜像,它集成了主流的深度学习框架和工具,能够帮助开发者快速部署和运行深度学习应用。这些容器镜像经过优化,可以直接在AWS云平台上使用,大大简化了深度学习环境的搭建过程。
近日,AWS Deep Learning Containers项目发布了v1.0-djl-0.32.0-inf-lmi-14.0.0版本,该版本主要针对DJL(Deeo Java Library)推理场景进行了优化和更新。DJL是一个基于Java的深度学习框架,它允许Java开发者在不了解底层实现细节的情况下,轻松使用各种深度学习模型进行推理和训练。
本次发布的核心镜像是基于CUDA 12.4和LMI 14.0.0构建的,包含了Torch 2.5.1等最新版本的深度学习框架。镜像中预装了PyYAML、awscli、datasets、numpy、pandas、scikit-learn等常用Python库,以及cuda-command-line-tools、libcublas、libnccl等CUDA相关工具和库,为深度学习推理任务提供了完整的运行环境。
在技术细节方面,这个版本包含了多项重要更新:
- 升级了PyTorch到2.5.1版本,带来了性能优化和新特性支持
- 包含了CUDA 12.4工具包,充分利用了NVIDIA最新GPU的计算能力
- 预装了transformers 4.45.2和tokenizers 0.20.3,支持最新的自然语言处理模型
- 集成了datasets 3.0.1库,方便加载和处理各种数据集
- 包含了scikit-learn 1.6.1和scipy 1.15.1,为机器学习任务提供支持
对于开发者而言,使用这个版本的容器镜像可以省去繁琐的环境配置过程,直接专注于模型推理和应用的开发。特别是在AWS云平台上,这些预优化的镜像能够充分发挥硬件性能,提高推理效率。
AWS Deep Learning Containers的持续更新反映了亚马逊云科技对开发者体验的重视,通过提供即用型的深度学习环境,降低了AI应用开发的门槛,加速了AI解决方案的落地。这个版本的发布进一步完善了DJL在推理场景下的支持,为Java开发者提供了更强大的工具。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









