首页
/ AWS Deep Learning Containers发布v1.0-djl-0.32.0-inf-lmi-14.0.0版本

AWS Deep Learning Containers发布v1.0-djl-0.32.0-inf-lmi-14.0.0版本

2025-07-07 10:12:29作者:申梦珏Efrain

AWS Deep Learning Containers是亚马逊云科技提供的一套预配置的深度学习容器镜像,它集成了主流的深度学习框架和工具,能够帮助开发者快速部署和运行深度学习应用。这些容器镜像经过优化,可以直接在AWS云平台上使用,大大简化了深度学习环境的搭建过程。

近日,AWS Deep Learning Containers项目发布了v1.0-djl-0.32.0-inf-lmi-14.0.0版本,该版本主要针对DJL(Deeo Java Library)推理场景进行了优化和更新。DJL是一个基于Java的深度学习框架,它允许Java开发者在不了解底层实现细节的情况下,轻松使用各种深度学习模型进行推理和训练。

本次发布的核心镜像是基于CUDA 12.4和LMI 14.0.0构建的,包含了Torch 2.5.1等最新版本的深度学习框架。镜像中预装了PyYAML、awscli、datasets、numpy、pandas、scikit-learn等常用Python库,以及cuda-command-line-tools、libcublas、libnccl等CUDA相关工具和库,为深度学习推理任务提供了完整的运行环境。

在技术细节方面,这个版本包含了多项重要更新:

  1. 升级了PyTorch到2.5.1版本,带来了性能优化和新特性支持
  2. 包含了CUDA 12.4工具包,充分利用了NVIDIA最新GPU的计算能力
  3. 预装了transformers 4.45.2和tokenizers 0.20.3,支持最新的自然语言处理模型
  4. 集成了datasets 3.0.1库,方便加载和处理各种数据集
  5. 包含了scikit-learn 1.6.1和scipy 1.15.1,为机器学习任务提供支持

对于开发者而言,使用这个版本的容器镜像可以省去繁琐的环境配置过程,直接专注于模型推理和应用的开发。特别是在AWS云平台上,这些预优化的镜像能够充分发挥硬件性能,提高推理效率。

AWS Deep Learning Containers的持续更新反映了亚马逊云科技对开发者体验的重视,通过提供即用型的深度学习环境,降低了AI应用开发的门槛,加速了AI解决方案的落地。这个版本的发布进一步完善了DJL在推理场景下的支持,为Java开发者提供了更强大的工具。

登录后查看全文
热门项目推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
139
1.91 K
kernelkernel
deepin linux kernel
C
22
6
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
273
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
923
551
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
74
64
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8