AWS Deep Learning Containers 发布 v1.8-djl-0.28.0-inf-lmi-10.0.0 版本
AWS Deep Learning Containers 是亚马逊云科技提供的一套预配置的深度学习容器镜像,旨在简化深度学习模型的训练和推理部署流程。这些容器镜像预先集成了主流深度学习框架、工具和依赖库,用户可以直接使用而无需花费大量时间配置环境。
本次发布的 v1.8-djl-0.28.0-inf-lmi-10.0.0 版本主要针对推理场景进行了优化,特别集成了 DJL(Deep Java Library)0.28.0 和 LMI(Large Model Inference)10.0.0 版本,支持 CUDA 12.4 计算架构。这个版本特别适合需要部署大型语言模型(LLM)进行推理的应用场景。
在深度学习框架支持方面,该版本预装了 PyTorch 2.3.0(CUDA 12.1 版本)和 TorchVision 0.18.0,为计算机视觉任务提供了强大的支持。同时,容器中还包含了 Transformers 4.41.1 和 Tokenizers 0.19.1 等自然语言处理相关的核心库,方便用户处理文本数据。
值得注意的是,该版本对 CUDA 生态系统的支持相当全面,包含了 CUDA 12.4 命令行工具、cuBLAS 12.4 库(含开发版本)、cuDNN 9(CUDA 12 版本)以及 NCCL 通信库。这些组件的预装确保了深度学习模型能够充分利用 GPU 的并行计算能力,获得最佳性能表现。
在数据处理方面,容器预装了 Datasets 2.19.1 和 Pandas 2.2.3 等常用数据处理库,方便用户进行数据预处理和分析。科学计算方面则包含了 NumPy 1.26.4 和 SciPy 1.14.1 等基础库,以及 scikit-learn 1.6.0 这样的机器学习工具包。
对于开发者而言,该容器还包含了构建工具如 Ninja 1.11.1.2 和 MPI4py 4.0.1,支持并行计算应用的开发。AWS 命令行工具 awscli 1.36.18 的预装则简化了与 AWS 云服务的交互过程。
这个版本的发布体现了 AWS 对深度学习推理场景的持续优化,特别是针对大型语言模型的部署需求。通过预装这些经过测试和优化的组件,开发者可以节省大量环境配置时间,专注于模型开发和业务逻辑实现。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00