Celery Progress 项目教程
1. 项目的目录结构及介绍
celery-progress/
├── celery_progress/
│ ├── __init__.py
│ ├── backend.py
│ ├── urls.py
│ ├── views.py
│ └── static/
│ └── celery_progress/
│ └── celery_progress.js
├── .gitignore
├── LICENSE
├── MAINTAINERS.md
├── MANIFEST.in
├── README.md
├── pyproject.toml
└── setup.py
目录结构介绍
-
celery_progress/: 项目的主要代码目录,包含了实现进度条功能的核心文件。
- __init__.py: 初始化文件,使目录成为一个Python包。
- backend.py: 后端处理文件,负责记录和更新任务进度。
- urls.py: URL配置文件,定义了项目的路由。
- views.py: 视图文件,处理HTTP请求并返回响应。
- static/: 静态文件目录,包含前端所需的JavaScript文件。
- celery_progress.js: 前端JavaScript文件,负责动态更新进度条。
-
.gitignore: Git忽略文件,指定不需要版本控制的文件和目录。
-
LICENSE: 项目许可证文件。
-
MAINTAINERS.md: 维护者信息文件。
-
MANIFEST.in: 打包配置文件,指定需要包含在发布包中的文件。
-
README.md: 项目说明文件,包含项目的介绍、安装和使用说明。
-
pyproject.toml: Python项目配置文件,定义了项目的构建系统和其他元数据。
-
setup.py: 安装脚本,用于安装项目所需的依赖和配置。
2. 项目的启动文件介绍
在 celery-progress 项目中,没有明确的“启动文件”,因为该项目是一个库,而不是一个独立的应用程序。然而,如果你要在Django项目中使用 celery-progress,你需要在Django的 settings.py 文件中进行配置,并在 urls.py 中添加相应的URL配置。
启动步骤
-
安装依赖:
pip install celery-progress -
配置Django项目:
-
在
settings.py中添加celery_progress到INSTALLED_APPS:INSTALLED_APPS = [ ... 'celery_progress', ] -
在
urls.py中添加URL配置:from django.urls import path, include urlpatterns = [ ... path('celery-progress/', include('celery_progress.urls')), ]
-
-
启动Django服务器:
python manage.py runserver
3. 项目的配置文件介绍
settings.py
在Django项目中使用 celery-progress 时,需要在 settings.py 文件中进行以下配置:
INSTALLED_APPS = [
...
'celery_progress',
]
urls.py
在 urls.py 文件中添加 celery-progress 的URL配置:
from django.urls import path, include
urlpatterns = [
...
path('celery-progress/', include('celery_progress.urls')),
]
celery_progress/urls.py
celery_progress/urls.py 文件定义了项目的路由,主要用于处理进度条的更新请求。
celery_progress/views.py
celery_progress/views.py 文件包含了处理HTTP请求的视图函数,主要用于获取任务的进度信息并返回给前端。
celery_progress/static/celery_progress/celery_progress.js
celery_progress.js 文件是前端JavaScript文件,负责动态更新进度条的显示。
通过以上配置和文件的介绍,你可以顺利地在Django项目中集成和使用 celery-progress 库。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C088
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python057
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0137
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00