Celery Progress 项目教程
1. 项目的目录结构及介绍
celery-progress/
├── celery_progress/
│ ├── __init__.py
│ ├── backend.py
│ ├── urls.py
│ ├── views.py
│ └── static/
│ └── celery_progress/
│ └── celery_progress.js
├── .gitignore
├── LICENSE
├── MAINTAINERS.md
├── MANIFEST.in
├── README.md
├── pyproject.toml
└── setup.py
目录结构介绍
-
celery_progress/: 项目的主要代码目录,包含了实现进度条功能的核心文件。
- __init__.py: 初始化文件,使目录成为一个Python包。
- backend.py: 后端处理文件,负责记录和更新任务进度。
- urls.py: URL配置文件,定义了项目的路由。
- views.py: 视图文件,处理HTTP请求并返回响应。
- static/: 静态文件目录,包含前端所需的JavaScript文件。
- celery_progress.js: 前端JavaScript文件,负责动态更新进度条。
-
.gitignore: Git忽略文件,指定不需要版本控制的文件和目录。
-
LICENSE: 项目许可证文件。
-
MAINTAINERS.md: 维护者信息文件。
-
MANIFEST.in: 打包配置文件,指定需要包含在发布包中的文件。
-
README.md: 项目说明文件,包含项目的介绍、安装和使用说明。
-
pyproject.toml: Python项目配置文件,定义了项目的构建系统和其他元数据。
-
setup.py: 安装脚本,用于安装项目所需的依赖和配置。
2. 项目的启动文件介绍
在 celery-progress 项目中,没有明确的“启动文件”,因为该项目是一个库,而不是一个独立的应用程序。然而,如果你要在Django项目中使用 celery-progress,你需要在Django的 settings.py 文件中进行配置,并在 urls.py 中添加相应的URL配置。
启动步骤
-
安装依赖:
pip install celery-progress -
配置Django项目:
-
在
settings.py中添加celery_progress到INSTALLED_APPS:INSTALLED_APPS = [ ... 'celery_progress', ] -
在
urls.py中添加URL配置:from django.urls import path, include urlpatterns = [ ... path('celery-progress/', include('celery_progress.urls')), ]
-
-
启动Django服务器:
python manage.py runserver
3. 项目的配置文件介绍
settings.py
在Django项目中使用 celery-progress 时,需要在 settings.py 文件中进行以下配置:
INSTALLED_APPS = [
...
'celery_progress',
]
urls.py
在 urls.py 文件中添加 celery-progress 的URL配置:
from django.urls import path, include
urlpatterns = [
...
path('celery-progress/', include('celery_progress.urls')),
]
celery_progress/urls.py
celery_progress/urls.py 文件定义了项目的路由,主要用于处理进度条的更新请求。
celery_progress/views.py
celery_progress/views.py 文件包含了处理HTTP请求的视图函数,主要用于获取任务的进度信息并返回给前端。
celery_progress/static/celery_progress/celery_progress.js
celery_progress.js 文件是前端JavaScript文件,负责动态更新进度条的显示。
通过以上配置和文件的介绍,你可以顺利地在Django项目中集成和使用 celery-progress 库。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00