Whatlies 项目教程
2024-09-21 18:32:48作者:何举烈Damon
1. 项目介绍
Whatlies 是一个用于理解和可视化词嵌入(word embeddings)的工具包。它提供了一系列工具,帮助用户更容易地创建词嵌入的可视化,并支持多种语言后端,如 spaCy、fasttext、tfhub、huggingface 和 bpemb。Whatlies 的主要目标是帮助用户理解词嵌入中的“隐藏信息”,并通过可视化操作来探索这些嵌入的特性。
2. 项目快速启动
安装
首先,通过 pip 安装 Whatlies:
pip install whatlies
如果你需要特定的语言后端支持,可以安装相应的扩展包:
pip install whatlies[spacy]
pip install whatlies[tfhub]
pip install whatlies[transformers]
如果你想安装所有支持的后端,可以使用:
pip install whatlies[all]
快速示例
以下是一个简单的示例,展示如何使用 Whatlies 加载词嵌入并进行可视化:
from whatlies import EmbeddingSet
from whatlies.language import SpacyLanguage
# 加载 spaCy 语言模型
lang = SpacyLanguage("en_core_web_md")
# 定义一些词汇
words = ["cat", "dog", "fish", "kitten", "man", "woman", "king", "queen", "doctor", "nurse"]
# 创建 EmbeddingSet
emb = EmbeddingSet(*[lang[w] for w in words])
# 进行交互式可视化
emb.plot_interactive(x_axis=emb["man"], y_axis=emb["woman"])
3. 应用案例和最佳实践
案例1:性别偏见消除
在自然语言处理中,词嵌入常常包含性别偏见。Whatlies 可以帮助你通过线性代数操作来消除这些偏见。以下是一个示例:
# 原始可视化
orig_chart = emb.plot_interactive('man', 'woman')
# 消除性别偏见
new_ts = emb | (emb['king'] - emb['queen'])
# 新的可视化
new_chart = new_ts.plot_interactive('man', 'woman')
案例2:PCA 和 UMAP 降维
Whatlies 支持多种降维技术,如 PCA 和 UMAP,帮助你更好地理解高维词嵌入的结构:
from whatlies.transformers import Pca, Umap
# 原始可视化
orig_chart = emb.plot_interactive('man', 'woman')
# PCA 降维
pca_plot = emb.transform(Pca(2)).plot_interactive()
# UMAP 降维
umap_plot = emb.transform(Umap(2)).plot_interactive()
# 显示结果
pca_plot | umap_plot
4. 典型生态项目
1. spaCy
spaCy 是一个用于自然语言处理的强大工具,Whatlies 与 spaCy 集成,可以直接使用 spaCy 的词嵌入模型进行可视化。
2. TensorFlow Hub
TensorFlow Hub 提供了大量的预训练模型,Whatlies 支持从 TensorFlow Hub 加载词嵌入模型,并进行可视化操作。
3. Hugging Face Transformers
Hugging Face 的 Transformers 库提供了多种预训练的语言模型,Whatlies 可以与这些模型集成,帮助用户理解这些模型的词嵌入特性。
4. fastText
fastText 是 Facebook 开发的一个用于高效文本分类和词嵌入的库,Whatlies 支持 fastText 的词嵌入可视化。
通过这些生态项目的支持,Whatlies 能够覆盖广泛的词嵌入应用场景,帮助用户更好地理解和利用词嵌入技术。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover-X1-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer-X1-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile015
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
306
2.7 K
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
140
170
暂无简介
Dart
598
131
React Native鸿蒙化仓库
JavaScript
235
309
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
634
232
仓颉编译器源码及 cjdb 调试工具。
C++
123
738
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.06 K
616
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
199
74
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
460