Whatlies 项目教程
2024-09-21 20:17:10作者:何举烈Damon
1. 项目介绍
Whatlies 是一个用于理解和可视化词嵌入(word embeddings)的工具包。它提供了一系列工具,帮助用户更容易地创建词嵌入的可视化,并支持多种语言后端,如 spaCy、fasttext、tfhub、huggingface 和 bpemb。Whatlies 的主要目标是帮助用户理解词嵌入中的“隐藏信息”,并通过可视化操作来探索这些嵌入的特性。
2. 项目快速启动
安装
首先,通过 pip 安装 Whatlies:
pip install whatlies
如果你需要特定的语言后端支持,可以安装相应的扩展包:
pip install whatlies[spacy]
pip install whatlies[tfhub]
pip install whatlies[transformers]
如果你想安装所有支持的后端,可以使用:
pip install whatlies[all]
快速示例
以下是一个简单的示例,展示如何使用 Whatlies 加载词嵌入并进行可视化:
from whatlies import EmbeddingSet
from whatlies.language import SpacyLanguage
# 加载 spaCy 语言模型
lang = SpacyLanguage("en_core_web_md")
# 定义一些词汇
words = ["cat", "dog", "fish", "kitten", "man", "woman", "king", "queen", "doctor", "nurse"]
# 创建 EmbeddingSet
emb = EmbeddingSet(*[lang[w] for w in words])
# 进行交互式可视化
emb.plot_interactive(x_axis=emb["man"], y_axis=emb["woman"])
3. 应用案例和最佳实践
案例1:性别偏见消除
在自然语言处理中,词嵌入常常包含性别偏见。Whatlies 可以帮助你通过线性代数操作来消除这些偏见。以下是一个示例:
# 原始可视化
orig_chart = emb.plot_interactive('man', 'woman')
# 消除性别偏见
new_ts = emb | (emb['king'] - emb['queen'])
# 新的可视化
new_chart = new_ts.plot_interactive('man', 'woman')
案例2:PCA 和 UMAP 降维
Whatlies 支持多种降维技术,如 PCA 和 UMAP,帮助你更好地理解高维词嵌入的结构:
from whatlies.transformers import Pca, Umap
# 原始可视化
orig_chart = emb.plot_interactive('man', 'woman')
# PCA 降维
pca_plot = emb.transform(Pca(2)).plot_interactive()
# UMAP 降维
umap_plot = emb.transform(Umap(2)).plot_interactive()
# 显示结果
pca_plot | umap_plot
4. 典型生态项目
1. spaCy
spaCy 是一个用于自然语言处理的强大工具,Whatlies 与 spaCy 集成,可以直接使用 spaCy 的词嵌入模型进行可视化。
2. TensorFlow Hub
TensorFlow Hub 提供了大量的预训练模型,Whatlies 支持从 TensorFlow Hub 加载词嵌入模型,并进行可视化操作。
3. Hugging Face Transformers
Hugging Face 的 Transformers 库提供了多种预训练的语言模型,Whatlies 可以与这些模型集成,帮助用户理解这些模型的词嵌入特性。
4. fastText
fastText 是 Facebook 开发的一个用于高效文本分类和词嵌入的库,Whatlies 支持 fastText 的词嵌入可视化。
通过这些生态项目的支持,Whatlies 能够覆盖广泛的词嵌入应用场景,帮助用户更好地理解和利用词嵌入技术。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0127
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 小米Mini R1C MT7620爱快固件下载指南:解锁企业级网络管理功能
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
446
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
825
398
Ascend Extension for PyTorch
Python
250
285
暂无简介
Dart
702
166
React Native鸿蒙化仓库
JavaScript
278
329
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
680
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
147
51
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19