Whatlies 项目教程
2024-09-21 17:43:56作者:何举烈Damon
1. 项目介绍
Whatlies 是一个用于理解和可视化词嵌入(word embeddings)的工具包。它提供了一系列工具,帮助用户更容易地创建词嵌入的可视化,并支持多种语言后端,如 spaCy、fasttext、tfhub、huggingface 和 bpemb。Whatlies 的主要目标是帮助用户理解词嵌入中的“隐藏信息”,并通过可视化操作来探索这些嵌入的特性。
2. 项目快速启动
安装
首先,通过 pip 安装 Whatlies:
pip install whatlies
如果你需要特定的语言后端支持,可以安装相应的扩展包:
pip install whatlies[spacy]
pip install whatlies[tfhub]
pip install whatlies[transformers]
如果你想安装所有支持的后端,可以使用:
pip install whatlies[all]
快速示例
以下是一个简单的示例,展示如何使用 Whatlies 加载词嵌入并进行可视化:
from whatlies import EmbeddingSet
from whatlies.language import SpacyLanguage
# 加载 spaCy 语言模型
lang = SpacyLanguage("en_core_web_md")
# 定义一些词汇
words = ["cat", "dog", "fish", "kitten", "man", "woman", "king", "queen", "doctor", "nurse"]
# 创建 EmbeddingSet
emb = EmbeddingSet(*[lang[w] for w in words])
# 进行交互式可视化
emb.plot_interactive(x_axis=emb["man"], y_axis=emb["woman"])
3. 应用案例和最佳实践
案例1:性别偏见消除
在自然语言处理中,词嵌入常常包含性别偏见。Whatlies 可以帮助你通过线性代数操作来消除这些偏见。以下是一个示例:
# 原始可视化
orig_chart = emb.plot_interactive('man', 'woman')
# 消除性别偏见
new_ts = emb | (emb['king'] - emb['queen'])
# 新的可视化
new_chart = new_ts.plot_interactive('man', 'woman')
案例2:PCA 和 UMAP 降维
Whatlies 支持多种降维技术,如 PCA 和 UMAP,帮助你更好地理解高维词嵌入的结构:
from whatlies.transformers import Pca, Umap
# 原始可视化
orig_chart = emb.plot_interactive('man', 'woman')
# PCA 降维
pca_plot = emb.transform(Pca(2)).plot_interactive()
# UMAP 降维
umap_plot = emb.transform(Umap(2)).plot_interactive()
# 显示结果
pca_plot | umap_plot
4. 典型生态项目
1. spaCy
spaCy 是一个用于自然语言处理的强大工具,Whatlies 与 spaCy 集成,可以直接使用 spaCy 的词嵌入模型进行可视化。
2. TensorFlow Hub
TensorFlow Hub 提供了大量的预训练模型,Whatlies 支持从 TensorFlow Hub 加载词嵌入模型,并进行可视化操作。
3. Hugging Face Transformers
Hugging Face 的 Transformers 库提供了多种预训练的语言模型,Whatlies 可以与这些模型集成,帮助用户理解这些模型的词嵌入特性。
4. fastText
fastText 是 Facebook 开发的一个用于高效文本分类和词嵌入的库,Whatlies 支持 fastText 的词嵌入可视化。
通过这些生态项目的支持,Whatlies 能够覆盖广泛的词嵌入应用场景,帮助用户更好地理解和利用词嵌入技术。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
Ascend Extension for PyTorch
Python
343
410
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
602
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
181
暂无简介
Dart
775
192
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
757
React Native鸿蒙化仓库
JavaScript
303
356
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
895