Whatlies 项目教程
2024-09-21 22:04:38作者:何举烈Damon
1. 项目介绍
Whatlies 是一个用于理解和可视化词嵌入(word embeddings)的工具包。它提供了一系列工具,帮助用户更容易地创建词嵌入的可视化,并支持多种语言后端,如 spaCy、fasttext、tfhub、huggingface 和 bpemb。Whatlies 的主要目标是帮助用户理解词嵌入中的“隐藏信息”,并通过可视化操作来探索这些嵌入的特性。
2. 项目快速启动
安装
首先,通过 pip 安装 Whatlies:
pip install whatlies
如果你需要特定的语言后端支持,可以安装相应的扩展包:
pip install whatlies[spacy]
pip install whatlies[tfhub]
pip install whatlies[transformers]
如果你想安装所有支持的后端,可以使用:
pip install whatlies[all]
快速示例
以下是一个简单的示例,展示如何使用 Whatlies 加载词嵌入并进行可视化:
from whatlies import EmbeddingSet
from whatlies.language import SpacyLanguage
# 加载 spaCy 语言模型
lang = SpacyLanguage("en_core_web_md")
# 定义一些词汇
words = ["cat", "dog", "fish", "kitten", "man", "woman", "king", "queen", "doctor", "nurse"]
# 创建 EmbeddingSet
emb = EmbeddingSet(*[lang[w] for w in words])
# 进行交互式可视化
emb.plot_interactive(x_axis=emb["man"], y_axis=emb["woman"])
3. 应用案例和最佳实践
案例1:性别偏见消除
在自然语言处理中,词嵌入常常包含性别偏见。Whatlies 可以帮助你通过线性代数操作来消除这些偏见。以下是一个示例:
# 原始可视化
orig_chart = emb.plot_interactive('man', 'woman')
# 消除性别偏见
new_ts = emb | (emb['king'] - emb['queen'])
# 新的可视化
new_chart = new_ts.plot_interactive('man', 'woman')
案例2:PCA 和 UMAP 降维
Whatlies 支持多种降维技术,如 PCA 和 UMAP,帮助你更好地理解高维词嵌入的结构:
from whatlies.transformers import Pca, Umap
# 原始可视化
orig_chart = emb.plot_interactive('man', 'woman')
# PCA 降维
pca_plot = emb.transform(Pca(2)).plot_interactive()
# UMAP 降维
umap_plot = emb.transform(Umap(2)).plot_interactive()
# 显示结果
pca_plot | umap_plot
4. 典型生态项目
1. spaCy
spaCy 是一个用于自然语言处理的强大工具,Whatlies 与 spaCy 集成,可以直接使用 spaCy 的词嵌入模型进行可视化。
2. TensorFlow Hub
TensorFlow Hub 提供了大量的预训练模型,Whatlies 支持从 TensorFlow Hub 加载词嵌入模型,并进行可视化操作。
3. Hugging Face Transformers
Hugging Face 的 Transformers 库提供了多种预训练的语言模型,Whatlies 可以与这些模型集成,帮助用户理解这些模型的词嵌入特性。
4. fastText
fastText 是 Facebook 开发的一个用于高效文本分类和词嵌入的库,Whatlies 支持 fastText 的词嵌入可视化。
通过这些生态项目的支持,Whatlies 能够覆盖广泛的词嵌入应用场景,帮助用户更好地理解和利用词嵌入技术。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 Python案例资源下载 - 从入门到精通的完整项目代码合集 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器
项目优选
收起
deepin linux kernel
C
24
9
暂无简介
Dart
663
152
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
659
297
Ascend Extension for PyTorch
Python
216
235
React Native鸿蒙化仓库
JavaScript
254
320
仓颉编译器源码及 cjdb 调试工具。
C++
132
866
仓颉编程语言运行时与标准库。
Cangjie
139
874
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.18 K
648
仓颉编程语言开发者文档。
59
818