Cheshire Cat AI核心项目中的Rabbit Hole文本处理钩子使用指南
2025-06-29 06:00:59作者:董斯意
在Cheshire Cat AI核心项目中,Rabbit Hole功能负责处理用户上传的文档内容。开发者可以通过after_rabbithole_splitted_text钩子对分割后的文本块进行后处理,但在实际使用中需要注意一些关键细节。
钩子功能解析
after_rabbithole_splitted_text钩子会在文档被分割成文本块后触发,允许开发者对这些文本块进行自定义处理。该钩子接收两个参数:
chunks: 包含所有分割后的文本块cat: 提供对核心功能的访问
常见错误与解决方案
许多开发者直接修改文本内容而忽略了文本块的数据结构。实际上,每个chunk都是LangChain的Document对象,必须通过其page_content属性来访问和修改文本内容。
错误示范:
@hook
def after_rabbithole_splitted_text(chunks, cat):
edited_chunks = []
for chunk in chunks:
new_chunk = cat.llm(f"处理文本: {chunk}") # 错误:直接使用chunk对象
edited_chunks.append(new_chunk)
return edited_chunks
正确实现方式
有两种推荐的处理方式:
- 直接修改现有chunk对象(推荐):
@hook
def after_rabbithole_splitted_text(chunks, cat):
for chunk in chunks:
chunk.page_content = cat.llm(f"处理文本: {chunk.page_content}")
return chunks
- 创建新Document对象:
from langchain.docstore.document import Document
@hook
def after_rabbithole_splitted_text(chunks, cat):
edited_chunks = []
for chunk in chunks:
new_text = cat.llm(f"处理文本: {chunk.page_content}")
edited_chunks.append(Document(page_content=new_text, metadata={}))
return edited_chunks
实际应用场景
这个钩子可以用于多种文本处理场景:
- 敏感词过滤:自动替换不当内容
- 文本标准化:统一日期、货币等格式
- 内容增强:添加额外的上下文信息
- 语言处理:进行翻译或简写
性能考虑
当处理大量文档时,建议:
- 批量处理文本块而非逐个处理
- 考虑使用缓存机制
- 避免在钩子中进行耗时操作
通过正确使用这个钩子,开发者可以灵活地控制文档处理流程,实现各种定制化需求。记住始终处理Document对象的page_content属性,这是保证功能正常工作的关键。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementPersist and reuse KV Cache to speedup your LLM.Python02
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 STM32到GD32项目移植完全指南:从兼容性到实战技巧 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
283
2.59 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
225
303
暂无简介
Dart
572
127
Ascend Extension for PyTorch
Python
109
139
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
602
171
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.04 K
608
仓颉编译器源码及 cjdb 调试工具。
C++
120
179
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
448
openGauss kernel ~ openGauss is an open source relational database management system
C++
154
205