Cheshire Cat AI核心项目中的Rabbit Hole文本处理钩子使用指南
2025-06-29 00:40:04作者:董斯意
在Cheshire Cat AI核心项目中,Rabbit Hole功能负责处理用户上传的文档内容。开发者可以通过after_rabbithole_splitted_text钩子对分割后的文本块进行后处理,但在实际使用中需要注意一些关键细节。
钩子功能解析
after_rabbithole_splitted_text钩子会在文档被分割成文本块后触发,允许开发者对这些文本块进行自定义处理。该钩子接收两个参数:
chunks: 包含所有分割后的文本块cat: 提供对核心功能的访问
常见错误与解决方案
许多开发者直接修改文本内容而忽略了文本块的数据结构。实际上,每个chunk都是LangChain的Document对象,必须通过其page_content属性来访问和修改文本内容。
错误示范:
@hook
def after_rabbithole_splitted_text(chunks, cat):
edited_chunks = []
for chunk in chunks:
new_chunk = cat.llm(f"处理文本: {chunk}") # 错误:直接使用chunk对象
edited_chunks.append(new_chunk)
return edited_chunks
正确实现方式
有两种推荐的处理方式:
- 直接修改现有chunk对象(推荐):
@hook
def after_rabbithole_splitted_text(chunks, cat):
for chunk in chunks:
chunk.page_content = cat.llm(f"处理文本: {chunk.page_content}")
return chunks
- 创建新Document对象:
from langchain.docstore.document import Document
@hook
def after_rabbithole_splitted_text(chunks, cat):
edited_chunks = []
for chunk in chunks:
new_text = cat.llm(f"处理文本: {chunk.page_content}")
edited_chunks.append(Document(page_content=new_text, metadata={}))
return edited_chunks
实际应用场景
这个钩子可以用于多种文本处理场景:
- 敏感词过滤:自动替换不当内容
- 文本标准化:统一日期、货币等格式
- 内容增强:添加额外的上下文信息
- 语言处理:进行翻译或简写
性能考虑
当处理大量文档时,建议:
- 批量处理文本块而非逐个处理
- 考虑使用缓存机制
- 避免在钩子中进行耗时操作
通过正确使用这个钩子,开发者可以灵活地控制文档处理流程,实现各种定制化需求。记住始终处理Document对象的page_content属性,这是保证功能正常工作的关键。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C092
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
474
3.53 K
React Native鸿蒙化仓库
JavaScript
287
339
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
224
92
Ascend Extension for PyTorch
Python
283
316
暂无简介
Dart
723
174
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
850
440
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
699
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19