PD-Denoising:对抗真实噪声的新一代图像去噪神器
2024-06-06 14:05:51作者:翟萌耘Ralph

在数字图像处理领域,PD-Denoising是一个突破性的开源项目,它解决了传统基于Additive White Gaussian Noise(AWGN)的去噪模型在处理现实世界复杂噪声时性能下降的问题。这个项目是When AWGN-based Denoiser Meets Real Noises论文的官方PyTorch实现,通过创新的Pixel-shuffle Down-sampling(PD)策略,提高了对真实噪声图像的去噪效果。
项目简介
PD-Denoising的核心在于其基础模型结构和训练过程的革新。它结合了一个噪声估算器和一个后续的非盲去噪器,并采用混合AWGN和Random Value Impulse Noise(RVIN)进行训练。此外,PD适应策略通过下采样和平铺操作,使模型能够更好地适应并处理真实的、空间相关和变异的噪声。
技术分析
基础模型
该模型由噪声估算器E和非盲去噪器R组成,它们共同训练以区分两种噪声。这一设计使得模型能在合成数据上学习到噪声模式,并在真实图像中应用。
PD适应策略
PD策略包括像素打乱下的下采样,以匹配AWGN并增强模型的适应性。通过这种方法,模型可以精细地处理每个子区域,增强纹理细节,同时保留平坦区域的完整性。
应用场景
此项目特别适用于处理:
- RNI15 数据集上的图像,展示出比原始模型更好的去噪效果。
- DND 测试基准,实现在sRGB图像上的最佳性能。
- 自然环境中拍摄的夜间照片,显示了在低光照条件下的强大去噪能力。
项目特点
- 出色的效果 - 在多个数据集和实际应用中,PD-Denoising都展示了出色的去噪表现,尤其在处理真实噪声图像时超越了其他方法。
- 通用性 - PD方法可嵌入到其他深度学习去噪模型或传统的去噪算法中,提升整体性能。
- 易用性 - 该项目提供清晰的训练和测试脚本,依赖项明确,易于集成到现有工作流中。
- 灵活性 - 用户可以通过调整参数
k来平衡图像细节和背景平滑度,以满足不同的去噪需求。
如果你正在寻找一种有效的方法来应对现实世界的图像噪声挑战,那么PD-Denoising无疑是值得一试的选择。立即加入社区,探索更多可能吧!
# 克隆项目库
git clone https://github.com/yzhouas/PD-Denoising-pytorch.git
# 查看README获取详细的安装和使用指南
cd PD-Denoising-pytorch
参考文献:
@article{zhou2019awgn,
title={When AWGN-based Denoiser Meets Real Noises},
author={Zhou, Yuqian and Jiao, Jianbo and Huang, Haibin and Wang, Yang and Wang, Jue and Shi, Honghui and Huang, Thomas},
journal={arXiv preprint arXiv:1904.03485},
year={2019}
}
让我们一起探索更纯净的视觉世界,使用PD-Denoising让图像重焕生机!
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
STM32到GD32项目移植完全指南:从兼容性到实战技巧 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 开源电子设计自动化利器:KiCad EDA全方位使用指南 网页设计期末大作业资源包 - 一站式解决方案助力高效完成项目 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具
项目优选
收起
deepin linux kernel
C
24
9
暂无简介
Dart
669
155
Ascend Extension for PyTorch
Python
219
236
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
308
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.82 K
React Native鸿蒙化仓库
JavaScript
259
322
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.19 K
653
仓颉编程语言运行时与标准库。
Cangjie
141
879