PD-Denoising:对抗真实噪声的新一代图像去噪神器
2024-06-06 14:05:51作者:翟萌耘Ralph

在数字图像处理领域,PD-Denoising是一个突破性的开源项目,它解决了传统基于Additive White Gaussian Noise(AWGN)的去噪模型在处理现实世界复杂噪声时性能下降的问题。这个项目是When AWGN-based Denoiser Meets Real Noises论文的官方PyTorch实现,通过创新的Pixel-shuffle Down-sampling(PD)策略,提高了对真实噪声图像的去噪效果。
项目简介
PD-Denoising的核心在于其基础模型结构和训练过程的革新。它结合了一个噪声估算器和一个后续的非盲去噪器,并采用混合AWGN和Random Value Impulse Noise(RVIN)进行训练。此外,PD适应策略通过下采样和平铺操作,使模型能够更好地适应并处理真实的、空间相关和变异的噪声。
技术分析
基础模型
该模型由噪声估算器E和非盲去噪器R组成,它们共同训练以区分两种噪声。这一设计使得模型能在合成数据上学习到噪声模式,并在真实图像中应用。
PD适应策略
PD策略包括像素打乱下的下采样,以匹配AWGN并增强模型的适应性。通过这种方法,模型可以精细地处理每个子区域,增强纹理细节,同时保留平坦区域的完整性。
应用场景
此项目特别适用于处理:
- RNI15 数据集上的图像,展示出比原始模型更好的去噪效果。
- DND 测试基准,实现在sRGB图像上的最佳性能。
- 自然环境中拍摄的夜间照片,显示了在低光照条件下的强大去噪能力。
项目特点
- 出色的效果 - 在多个数据集和实际应用中,PD-Denoising都展示了出色的去噪表现,尤其在处理真实噪声图像时超越了其他方法。
- 通用性 - PD方法可嵌入到其他深度学习去噪模型或传统的去噪算法中,提升整体性能。
- 易用性 - 该项目提供清晰的训练和测试脚本,依赖项明确,易于集成到现有工作流中。
- 灵活性 - 用户可以通过调整参数
k来平衡图像细节和背景平滑度,以满足不同的去噪需求。
如果你正在寻找一种有效的方法来应对现实世界的图像噪声挑战,那么PD-Denoising无疑是值得一试的选择。立即加入社区,探索更多可能吧!
# 克隆项目库
git clone https://github.com/yzhouas/PD-Denoising-pytorch.git
# 查看README获取详细的安装和使用指南
cd PD-Denoising-pytorch
参考文献:
@article{zhou2019awgn,
title={When AWGN-based Denoiser Meets Real Noises},
author={Zhou, Yuqian and Jiao, Jianbo and Huang, Haibin and Wang, Yang and Wang, Jue and Shi, Honghui and Huang, Thomas},
journal={arXiv preprint arXiv:1904.03485},
year={2019}
}
让我们一起探索更纯净的视觉世界,使用PD-Denoising让图像重焕生机!
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
531
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355