Noise2Self:自我监督下的盲目降噪框架
2024-09-25 17:38:13作者:翟江哲Frasier
项目介绍
Noise2Self 是一个用于高维数据无监督降噪的开源框架。它无需信号先验知识、噪声估计或干净的数据集作为训练目标。该框架基于一个核心假设:噪声在不同维度上是统计独立的,而真实信号在这些维度之间存在某种程度的相关性。因此,对于一大类称为“-不变”的函数,可以从仅有的噪声数据中评估去噪器的效果。这使得任何参数化的去噪算法(从简单的中值滤波器到复杂的深度神经网络)都能够在不依赖于干净样本的情况下进行自我校准。
该项目由 Joshua Batson 和 Loic Royer 等人开发,并通过 GitHub 和论文在 arXiv 上发表,旨在简化高维度数据处理中的降噪过程。
项目快速启动
要快速开始使用 Noise2Self 框架,首先确保安装了必要的依赖项。你可以通过运行以下命令来设置环境:
conda env create -f environment.yml
conda activate noise2self
接下来,克隆仓库到本地:
git clone https://github.com/czbiohub/noise2self.git
cd noise2self
若要测试基本功能,可以尝试运行示例笔记本之一,例如进行传统图像去噪的校准:
jupyter notebook Intro\ to\ Calibration.ipynb
这个步骤将引导你如何使用框架对经典的图像去噪模型进行自我监督校准,无需明确的干净数据。
应用案例和最佳实践
图像去噪
- 单次射击去噪:
Single Shot Denoising
笔记本展示如何仅凭一张512x512大小的单一噪声图像,让深层神经网络学习去噪,效果超越传统的盲目图像去噪器。
单细胞基因表达数据分析
Noise2Self同样适用于处理复杂的数据集,如单细胞转录组学数据。利用其自我监督损失函数,可以在不额外加载清洁数据的情况下优化模型。
自我监督学习流程
- 在自我监督学习模式下,利用掩码(
Masker
)模块随机遮盖输入数据的一部分,然后让模型学习恢复被遮盖部分的内容,以此来形成损失并进行训练。
from noise2self.util import Masker
masker = Masker()
...
input, mask = masker.mask(noisy_image, iteration)
output = model(input)
loss = loss_function(output * mask, noisy_image * mask)
典型生态项目
尽管 Noise2Self 主打的是其核心框架,但它的设计理念鼓励开发者将其融入到更广泛的数据处理和分析工作流中。由于其通用性和自适应性强,理论上它可以成为生物信息学、图像处理以及任何涉及高维数据降噪领域的工具箱的一部分。社区成员可能会开发更多的插件或库,以适配特定领域的数据格式或增强模型性能,但这方面的具体实例需查看社区贡献或相关论坛讨论。
请注意,实际应用中最佳实践将依据数据特性、应用场景及性能要求而有所不同。不断探索和实验是实现项目最优整合的关键。
登录后查看全文
热门项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0123AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
226
2.27 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

暂无简介
Dart
526
116

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
988
586

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
351
1.43 K

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
61
17

GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
47
0

喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
17
0

React Native鸿蒙化仓库
JavaScript
212
288