TensorRT 8.5 在 Jetson Nano 上的编译问题分析与解决方案
问题背景
在 Jetson Nano 设备上编译 TensorRT 8.5 版本时,开发者遇到了两个主要问题。第一个问题是编译过程中找不到 fmhcaPlugin.h 头文件,第二个问题是在手动指定头文件路径后出现了未定义的引用错误。
问题分析
头文件缺失问题
当尝试编译 TensorRT 8.5 时,系统报告找不到 fmhcaPlugin.h 文件。这个文件属于 TensorRT 的多头交叉注意力插件(Multi-Head Cross Attention Plugin)组件。开发者尝试通过手动指定绝对路径来解决这个问题,但这并不是推荐的解决方案。
未定义引用错误
在手动修改头文件路径后,编译过程又遇到了新的问题:链接器无法找到 FMHAPluginCreator 和 FMHCAPluginCreator 类的虚函数表(vtable)和其他成员函数的实现。这表明虽然头文件被找到了,但相应的实现代码没有被正确编译或链接。
根本原因
经过深入分析,这些问题的主要原因是:
-
不支持的编译环境:TensorRT 8.5 版本并不支持直接在 Jetson 设备上进行源码编译。NVIDIA 为 Jetson 平台提供了预编译的 TensorRT 版本,这些版本已经针对特定的 JetPack SDK 进行了优化和测试。
-
版本兼容性问题:开发者试图在可能不兼容的环境下编译 TensorRT 8.5,特别是当系统已经安装了其他版本的 TensorRT 或相关依赖时。
解决方案
针对这个问题,正确的解决方法是:
-
使用官方支持的 JetPack 版本:对于 TensorRT 8.5.2,应该使用 JetPack 5.1.3 版本。这个版本的 JetPack 包含了预编译的 TensorRT 8.5.2,已经针对 Jetson 平台进行了优化。
-
重新刷写设备:建议完全重新刷写 Jetson Nano 设备,安装 JetPack 5.1.3 版本。这样可以确保所有相关组件(包括 CUDA、cuDNN 和 TensorRT)都是兼容的版本。
-
避免源码编译:除非有特殊需求,否则不建议在 Jetson 设备上从源码编译 TensorRT。官方提供的预编译版本已经包含了所有必要的插件和优化。
技术建议
对于需要在 Jetson 设备上使用 TensorRT 的开发者,建议遵循以下最佳实践:
-
始终使用 NVIDIA 官方推荐的 JetPack 版本,它包含了经过测试的 TensorRT 版本。
-
在升级 TensorRT 版本时,考虑同时升级整个 JetPack 环境,以确保组件兼容性。
-
如果确实需要特定功能或自定义插件,可以考虑只编译需要的插件部分,而不是整个 TensorRT 代码库。
-
在遇到编译问题时,首先检查 JetPack 版本与 TensorRT 版本的兼容性,这可以避免很多潜在问题。
通过遵循这些建议,开发者可以避免在 Jetson 平台上遇到 TensorRT 编译和兼容性问题,从而更专注于模型开发和优化工作。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0371Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0104AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









