首页
/ Search-R1项目训练Qwen-14B模型时的显存优化策略

Search-R1项目训练Qwen-14B模型时的显存优化策略

2025-07-05 04:09:55作者:牧宁李

在Search-R1项目中训练大型语言模型时,显存管理是一个关键挑战。本文针对Qwen-14B模型在训练过程中遇到的显存不足问题,提供专业的技术解决方案。

硬件需求分析

Qwen-14B作为140亿参数规模的大型模型,对计算资源有较高要求。根据项目经验,使用8张H100 80GB显卡可以成功训练该模型,而4张A100 80GB显卡则可能面临显存不足的问题。

显存优化方案

1. 增加计算资源

最直接的解决方案是增加GPU数量。建议至少使用8张高性能显卡(如H100 80GB)来确保训练过程的稳定性。

2. 调整并行策略

通过增大tensor_model_parallel_size参数可以优化张量并行策略,特别是在rollout阶段出现显存不足时,这一调整尤为有效。该参数控制模型在多个GPU间的张量并行分割程度。

3. 启用显存卸载技术

Search-R1项目支持多种显存优化技术,包括:

  • 优化器状态显存卸载
  • 梯度显存卸载
  • 参数显存卸载

这些技术可以将部分显存占用转移到主机内存,从而降低GPU显存压力。具体配置可参考项目中的训练脚本实现。

实施建议

对于使用4张A100 80GB显卡的用户,建议优先尝试以下组合方案:

  1. 适当增大tensor_model_parallel_size
  2. 启用全部显存卸载选项
  3. 保持较小的训练批次大小

若仍无法解决显存问题,则需考虑升级硬件配置或使用云服务获取更多计算资源。

通过合理配置这些参数和技术,可以在有限硬件资源下更高效地训练大型语言模型。

登录后查看全文
热门项目推荐
相关项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
22
6
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
217
2.23 K
flutter_flutterflutter_flutter
暂无简介
Dart
523
116
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
JavaScript
210
285
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
982
580
pytorchpytorch
Ascend Extension for PyTorch
Python
67
97
ops-mathops-math
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
564
87
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399
GLM-4.6GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
33
0