Qwen-14B模型LoRA微调中的显存优化策略
2025-05-12 11:56:34作者:尤峻淳Whitney
问题背景
在使用Qwen-14B大语言模型进行LoRA微调时,即使用两张32GB显存的显卡,仍然会遇到CUDA显存不足的问题。这是由于Qwen-14B作为140亿参数规模的模型,其显存需求本身就非常高,特别是在训练embedding层时。
显存不足的根本原因
- 模型规模庞大:Qwen-14B拥有140亿参数,即使使用LoRA微调,基础模型的参数仍然需要加载到显存中
- embedding层训练:从Qwen-14B开始训练时,embedding层需要参与训练,这会显著增加显存占用
- 数据长度影响:输入序列长度越长,显存占用呈平方级增长
- batch size设置:较大的batch size会线性增加显存需求
优化策略
1. 模型选择优化
建议从Qwen-14B-Chat模型开始微调,而非基础版Qwen-14B。Chat版本已经经过对话优化,可能更适合下游任务,且在某些情况下显存占用更优。
2. 训练参数调整
- 缩短输入序列长度:适当截断或分段处理长文本,减少max_length设置
- 减小batch size:从较小的batch size开始尝试,如1或2,逐步测试最大可用值
- 梯度累积:使用小batch size配合梯度累积达到等效大batch的效果
3. 高级优化技术
- DeepSpeed ZeRO-3:启用ZeRO-3优化可以显著减少显存占用,通过跨GPU分片存储优化器状态、梯度和参数
- CPU Offload:将部分计算卸载到CPU,减少GPU显存压力
- 混合精度训练:使用fp16或bf16混合精度训练,减少显存占用
- Flash Attention:安装优化的flash-attn实现,提高注意力机制的计算效率并降低显存需求
4. 代码层面优化
检查并确保正确设置了以下参数:
device_map="auto"用于自动分配模型到多GPUtorch_dtype设置为适当的精度- 正确配置了LoRA参数,特别是
target_modules的选择
实施建议
对于2×32GB显存的配置,建议采用以下组合方案:
- 使用Qwen-14B-Chat作为基础模型
- 设置max_length不超过1024
- batch size设为1
- 启用ZeRO-3和gradient checkpointing
- 考虑使用fp16混合精度
通过以上优化策略的组合应用,应该能够在有限显存条件下成功进行Qwen-14B的LoRA微调。实际应用中可能需要根据具体任务和数据特点进行参数调整,建议采用渐进式优化策略,从最小配置开始逐步增加复杂度。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C095
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
476
3.54 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
223
94
暂无简介
Dart
726
175
React Native鸿蒙化仓库
JavaScript
287
339
Ascend Extension for PyTorch
Python
284
317
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
701
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
441
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19