在Big Vision项目中加载CLIPPO预训练ViT模型的实践指南
背景介绍
Big Vision是Google Research开发的一个计算机视觉研究项目,其中包含了许多先进的视觉模型实现。CLIPPO是该项目中一个重要的多模态模型,结合了视觉和文本处理能力。本文将详细介绍如何在Big Vision项目中正确加载CLIPPO预训练的ViT(Vision Transformer)模型权重。
模型加载的核心问题
在尝试加载CLIPPO预训练权重时,开发者常会遇到"ScopeParamNotFoundError"错误,提示无法在"/embedding"作用域中找到名为"kernel"的参数。这主要是因为CLIPPO使用了特殊的模型封装结构,直接使用基础的ViT模型加载会导致参数结构不匹配。
正确加载方法
1. 获取代码和权重文件
首先需要克隆Big Vision项目并切换到包含CLIPPO实现的特定提交:
git clone --branch=main https://github.com/google-research/big_vision
cd big_vision && git checkout fd2d3bd2efc9d89ea959f16cd2f58ae8a495cd44
下载CLIPPO预训练权重文件,例如clippo_b16_yfcc100m_i21k_init_75c4.npz。
2. 使用正确的模型封装
CLIPPO使用了特殊的封装模型models.proj.clippo.one_tower,而不是直接使用基础的ViT模型。这是因为CLIPPO需要对自然图像和文本图像进行两次前向传播。
3. 参数结构调整
CLIPPO的权重文件包含三个主要部分:
- chrono:训练时间相关信息
- opt:优化器状态
- params:模型参数
其中params又分为:
- img:图像分支参数
- t:文本分支参数
图像分支参数包含:
- pos_embedding:位置编码
- MAPHead_0:映射头
- Transformer:Transformer层
- embedding:嵌入层
- head:输出头
4. 参数修复处理
在加载参数时,需要进行一些修复处理以适应模型结构变化:
- 调整位置编码的存储位置
- 处理CLS token与位置编码的组合方式
- 调整MAP-head变体的参数结构
实际应用建议
-
环境配置:确保使用兼容的JAX(0.4.13)和Flax(0.7.2)版本
-
输入预处理:注意CLIPPO模型期望的输入格式和预处理方式
-
模型微调:如果需要微调模型,建议:
- 保持预训练参数初始化
- 仅微调特定层(如分类头)
- 使用较小的学习率
-
多模态应用:CLIPPO的优势在于多模态处理,考虑同时利用其图像和文本处理能力
常见问题解决方案
-
参数不匹配错误:确保使用
one_tower封装而非基础ViT模型 -
形状不匹配:检查输入图像的分辨率和通道数是否符合模型要求
-
参数加载失败:验证权重文件路径是否正确,文件是否完整
-
版本兼容性问题:严格按照项目要求的依赖版本配置环境
通过以上方法和注意事项,开发者可以成功在Big Vision项目中加载和使用CLIPPO预训练的ViT模型,充分利用其强大的视觉表示能力。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00