ViT-pytorch 项目使用教程
1. 项目介绍
ViT-pytorch 是一个基于 PyTorch 实现的 Vision Transformer (ViT) 模型。ViT 模型是由 Google 提出的一种直接将 Transformer 应用于图像识别任务的模型,它在大型数据集上预训练后表现出色。该项目是 ViT 模型的 PyTorch 重新实现,旨在帮助研究人员和开发者快速上手并使用 Vision Transformer 进行图像识别任务。
2. 项目快速启动
2.1 环境准备
首先,确保你已经安装了 PyTorch 和相关依赖。你可以通过以下命令安装 PyTorch:
pip install torch torchvision
然后,克隆 ViT-pytorch 项目到本地:
git clone https://github.com/jeonsworld/ViT-pytorch.git
cd ViT-pytorch
2.2 安装依赖
进入项目目录后,安装所需的依赖:
pip install -r requirements.txt
2.3 训练模型
你可以使用提供的脚本来训练模型。以下是一个简单的训练示例:
python train.py --name cifar10-100_500 --dataset cifar10 --model_type ViT-B_16 --pretrained_dir checkpoint/ViT-B_16.npz
2.4 可视化注意力图
项目还提供了可视化注意力图的功能,你可以使用以下命令来生成注意力图:
python visualize_attention_map.ipynb
3. 应用案例和最佳实践
3.1 图像分类
ViT-pytorch 主要用于图像分类任务。你可以使用预训练的 ViT 模型对图像进行分类,或者在自己的数据集上进行微调。
3.2 迁移学习
由于 ViT 模型在大规模数据集上预训练后表现优异,因此迁移学习是一个常见的应用场景。你可以将预训练的 ViT 模型应用于自己的数据集,通过微调来适应特定的任务。
3.3 模型评估
在训练完成后,你可以使用以下代码来评估模型的性能:
from vit_pytorch import ViT
model = ViT(
image_size = 256,
patch_size = 32,
num_classes = 1000,
dim = 1024,
depth = 6,
heads = 16,
mlp_dim = 2048,
dropout = 0.1,
emb_dropout = 0.1
)
# 加载预训练权重
model.load_state_dict(torch.load('path_to_pretrained_weights.pth'))
# 评估模型
model.eval()
with torch.no_grad():
# 假设你有一个测试数据集
test_loader = ...
for images, labels in test_loader:
outputs = model(images)
# 计算准确率等指标
4. 典型生态项目
4.1 TorchVision
TorchVision 是 PyTorch 官方提供的计算机视觉工具库,包含了常用的数据集、模型架构和图像处理工具。你可以结合 TorchVision 使用 ViT-pytorch 进行图像分类任务。
4.2 timm
timm (PyTorch Image Models) 是一个由 Ross Wightman 维护的 PyTorch 图像模型库,包含了多种预训练的图像分类模型。你可以使用 timm 中的预训练模型作为 ViT-pytorch 的初始权重。
4.3 Hugging Face Transformers
Hugging Face 的 Transformers 库提供了多种预训练的 Transformer 模型,包括 ViT。你可以使用 Hugging Face 的 API 来加载和使用 ViT 模型,并与 ViT-pytorch 进行对比和集成。
通过这些生态项目的结合,你可以更高效地进行图像分类任务的研究和开发。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover-X1-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer-X1-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile015
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00