Great Expectations 1.3.9版本发布:数据质量监控工具的重大更新
Great Expectations是一个开源的数据质量监控和验证工具,它帮助数据工程师和分析师确保数据的准确性和可靠性。通过定义"期望"(expectations),用户可以自动验证数据是否符合预期标准,并在数据管道中建立质量检查点。
核心功能增强
本次1.3.9版本带来了几个重要的度量指标(Metric)类改进,进一步丰富了数据验证的能力:
-
移除Metric类中的batch_id参数:简化了Metric类的接口设计,使API更加清晰易用。这一变更反映了项目团队对代码架构的持续优化。
-
新增QueryRowCount度量指标:专门用于查询行数统计,为数据量验证提供了专用工具。这个指标特别适用于需要监控数据增长或缩减的场景。
-
ColumnPairValueInSet度量指标:新增了对列对值集合的验证能力,可以检查两列组合值是否在预定义的集合中。这对于验证关联数据的完整性非常有用。
-
MultiColumnValues度量指标:扩展了多列值验证功能,支持同时对多个列的值进行检查,提高了复杂数据验证场景下的效率。
重要问题修复
本次版本修复了几个关键问题,提升了工具的稳定性和用户体验:
-
验证定义工厂更新问题:修复了Validation Definition工厂中add_or_update方法无法更新批处理定义(batch definition)的问题,确保了配置更新的灵活性。
-
批处理度量计算问题:解决了batch.compute_metrics方法中的三个bug,并强制要求度量结果数量必须与度量指标数量一致,提高了计算的准确性。
-
批处理定义ID问题:确保Asset.get_batch_definition方法返回带有ID的BatchDefinition对象,保证了对象标识的完整性。
-
列值范围验证增强:当ExpectColumnValuesToBeBetween期望应用于不支持的列类型时,现在会明确抛出错误,避免了潜在的误用情况。
文档与用户体验改进
-
Airflow提供程序文档:改进了Airflow集成的文档可发现性,使数据工程师更容易在Airflow环境中使用Great Expectations。
-
代码块展示优化:为API文档中的代码块添加了标题和更好的格式,提升了文档的可读性。
-
版本链接管理:新增了自动化脚本,用于在新文档版本发布时更新相关链接,简化了文档维护工作。
-
验证定义参数显示:修复了验证定义参数在界面中的显示问题,使用户能更清晰地查看和配置验证参数。
维护与基础设施升级
-
代码质量工具升级:将mypy静态类型检查器升级到1.15.0版本,ruff代码格式化工具升级到0.9.9版本,提高了代码质量和一致性。
-
分析事件跟踪:新增了对验证定义运行的分析事件跟踪,帮助团队更好地理解用户行为和使用模式。
-
测试优化:改进了测试配置,移除重复设置,并使用data_context fixture重构部分测试,提高了测试的可靠性和维护性。
-
Slack通知优化:简化了Slack通知消息,移除重复的链接文本,使通知更加清晰简洁。
总结
Great Expectations 1.3.9版本在功能丰富性、稳定性和用户体验方面都做出了显著改进。新增的度量指标扩展了数据验证的能力范围,而关键问题的修复则提升了工具的可靠性。文档和维护工作的持续投入也体现了项目团队对长期可持续发展的重视。对于依赖数据质量监控的团队来说,这个版本值得考虑升级。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00