在nnUNet中指定不同训练器模型进行推理的方法
2025-06-02 20:51:33作者:殷蕙予
背景介绍
nnUNet是一个优秀的医学图像分割框架,它提供了标准化的训练和推理流程。在实际使用中,研究人员经常需要针对同一数据集尝试不同的训练策略或模型架构,这就需要在推理阶段能够灵活选择不同的训练器模型。
模型存储结构
当使用不同的nnUNetTrainer训练同一数据集时,nnUNet会在结果目录(nnUNet_results)下为每个训练器创建独立的子文件夹。例如:
nnUNet_results/
└── Dataset001_ABC/
├── nnUNetTrainerV1/
│ ├── fold_0/
│ └── ...
└── nnUNetTrainerV2/
├── fold_0/
└── ...
这种结构使得多个训练器模型可以并存,互不干扰。
推理时指定模型的方法
nnUNet提供了两种主要方式来指定推理使用的模型:
1. 通过标准预测命令指定
使用nnUNetv2_predict命令时,可以通过参数明确指定:
- 数据集名称
- 训练器类型(nnUNetTrainer)
- 网络配置(2d/3d_fullres等)
- 计划文件(plans)
例如:
nnUNetv2_predict -i input -o output -d Dataset001_ABC -tr nnUNetTrainerV1 -c 3d_fullres
系统会自动在对应训练器的文件夹中查找最佳模型权重进行推理。
2. 直接指定模型文件夹
对于更灵活的需求,可以使用nnUNetv2_predict_from_modelfolder命令直接指定模型所在文件夹路径:
nnUNetv2_predict_from_modelfolder -i input -o output -m /path/to/model/folder
这种方法完全绕过了nnUNet的标准模型查找机制,适用于特殊场景。
选择建议
对于大多数常规使用场景,推荐使用第一种标准预测命令方式。这种方式:
- 符合nnUNet的标准工作流程
- 便于复现实验结果
- 自动处理模型版本和配置
只有在需要直接访问特定模型文件或进行特殊实验时,才考虑使用第二种直接指定文件夹的方法。
常见问题
- 找不到模型:确保指定的训练器名称与文件夹名称完全一致,包括大小写
- 版本不匹配:不同版本的nnUNet可能有不同的训练器实现,注意保持训练和推理环境一致
- 权重选择:默认使用最终权重(fold_X/model_final_checkpoint),如需使用中间权重需要手动指定
通过合理使用这些方法,研究人员可以灵活地在不同训练器模型之间切换,比较它们的性能差异,从而找到最适合特定任务的模型配置。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C082
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
466
3.47 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
715
172
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
203
82
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
695
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1