开源项目推荐:Disentangled Non-Local Neural Networks
1. 项目介绍
"Disentangled Non-Local Neural Networks"(以下简称为DNL网络)是一个深度学习领域的新项目,由Minghao Yin等研究人员开发。该项目主要研究了在许多计算机视觉任务中,非局部块(non-local block)如何建模长距离依赖性。研究团队发现,非局部块的注意力计算可以分解为成对项(pairwise term)和单变量项(unary term),但这两项在非局部块中紧密耦合,这限制了各自的学习效果。基于此,他们提出了分解的非局部块(disentangled non-local block),将这两项解耦,以促进双方的学习。实验结果显示,DNL网络在各种任务中均优于原始的非局部块。
2. 项目技术分析
DNL网络的技术创新点在于,将非局部块中的成对项和单变量项解耦,使得模型可以更清晰地学习到像素间的关系以及每个像素的显著性。具体来说,DNL网络由一个白化的成对项和一个表示每个像素显著性的单变量项组成。通过使用独立的Softmax函数和嵌入矩阵,这两项被明确解耦。实验证明,白化成对项能够学习到清晰的区域内部线索,而单变量项则能学习到显著的边界。
3. 项目及技术应用场景
DNL网络可应用于多种计算机视觉任务,尤其是需要建模长距离依赖性的任务,如图像分割、目标检测等。该项目提供了在Cityscapes和ADE20K语义分割任务上的相关代码和配置文件,方便用户复现论文中的实验结果。
4. 项目特点
-
创新性:DNL网络首次将非局部块中的注意力计算分解为成对项和单变量项,并成功解耦,提高了模型的学习效果。
-
实用性:项目提供了详尽的安装指南和训练/验证脚本,用户可以轻松地在自己的数据集上使用DNL网络。
-
社区支持:项目作者在GitHub上积极回应社区提问,为用户提供了良好的技术支持。
总之,DNL网络是一个值得关注的深度学习项目,其创新的技术思路和实用的特性,使其在计算机视觉领域具有广泛的应用前景。如果你对非局部块或相关任务感兴趣,不妨尝试一下DNL网络吧!
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00