MolT5 开源项目使用教程
1. 项目介绍
MolT5 是一个用于分子与自然语言之间翻译的自监督学习框架。该项目通过预训练模型在大量未标记的自然语言文本和分子字符串上,实现了新的、有用的和具有挑战性的视觉-语言任务的模拟,例如分子描述和基于文本的新分子生成。MolT5 通过在单模态数据上预训练模型,克服了化学领域数据稀缺的缺点。
2. 项目快速启动
2.1 环境准备
首先,确保你已经安装了 Python 3.7 或更高版本,并安装了所需的依赖包。你可以通过以下命令安装依赖:
pip install -r requirements.txt
2.2 下载预训练模型
MolT5 提供了多个预训练模型,你可以从 HuggingFace 模型库中下载。以下是下载 molt5-large-smiles2caption
模型的示例代码:
from transformers import T5Tokenizer, T5ForConditionalGeneration
tokenizer = T5Tokenizer.from_pretrained("laituan245/molt5-large-smiles2caption", model_max_length=512)
model = T5ForConditionalGeneration.from_pretrained('laituan245/molt5-large-smiles2caption')
2.3 使用模型进行分子描述
以下是一个使用 molt5-large-smiles2caption
模型进行分子描述的示例代码:
input_text = 'C1=CC2=C(C(=C1)[O-])NC(=CC2=O)C(=O)O'
input_ids = tokenizer(input_text, return_tensors="pt").input_ids
outputs = model.generate(input_ids, num_beams=5, max_length=512)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
2.4 使用模型进行分子生成
以下是一个使用 molt5-large-caption2smiles
模型进行分子生成的示例代码:
tokenizer = T5Tokenizer.from_pretrained("laituan245/molt5-large-caption2smiles", model_max_length=512)
model = T5ForConditionalGeneration.from_pretrained('laituan245/molt5-large-caption2smiles')
input_text = 'The molecule is a monomethoxybenzene that is 2-methoxyphenol substituted by a hydroxymethyl group at position 4. It has a role as a plant metabolite. It is a member of guaiacols and a member of benzyl alcohols.'
input_ids = tokenizer(input_text, return_tensors="pt").input_ids
outputs = model.generate(input_ids, num_beams=5, max_length=512)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
3. 应用案例和最佳实践
3.1 分子描述
MolT5 可以用于生成分子的自然语言描述,这对于药物发现和化学研究非常有用。例如,给定一个分子的 SMILES 表示,MolT5 可以生成该分子的详细描述,包括其结构和功能。
3.2 分子生成
MolT5 还可以用于基于文本描述生成新的分子。这对于设计新的药物分子或材料非常有用。例如,给定一个描述特定性质的文本,MolT5 可以生成具有这些性质的分子。
3.3 数据增强
MolT5 可以用于数据增强,通过生成新的分子描述和分子来扩展现有的数据集。这对于训练更强大的机器学习模型非常有用。
4. 典型生态项目
4.1 T5X
T5X 是一个用于预训练和微调 T5 系列模型的框架。MolT5 使用了 T5X 框架进行模型的预训练和微调。
4.2 HuggingFace Transformers
HuggingFace Transformers 是一个广泛使用的自然语言处理库,提供了大量的预训练模型和工具。MolT5 的模型可以通过 HuggingFace Transformers 库进行加载和使用。
4.3 TensorFlow
TensorFlow 是一个广泛使用的机器学习框架,MolT5 使用了 TensorFlow 进行模型的训练和评估。
通过这些生态项目,MolT5 可以与其他工具和框架无缝集成,提供更强大的功能和更好的用户体验。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~059CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









