首页
/ MolT5 开源项目使用教程

MolT5 开源项目使用教程

2024-09-18 23:35:56作者:吴年前Myrtle

1. 项目介绍

MolT5 是一个用于分子与自然语言之间翻译的自监督学习框架。该项目通过预训练模型在大量未标记的自然语言文本和分子字符串上,实现了新的、有用的和具有挑战性的视觉-语言任务的模拟,例如分子描述和基于文本的新分子生成。MolT5 通过在单模态数据上预训练模型,克服了化学领域数据稀缺的缺点。

2. 项目快速启动

2.1 环境准备

首先,确保你已经安装了 Python 3.7 或更高版本,并安装了所需的依赖包。你可以通过以下命令安装依赖:

pip install -r requirements.txt

2.2 下载预训练模型

MolT5 提供了多个预训练模型,你可以从 HuggingFace 模型库中下载。以下是下载 molt5-large-smiles2caption 模型的示例代码:

from transformers import T5Tokenizer, T5ForConditionalGeneration

tokenizer = T5Tokenizer.from_pretrained("laituan245/molt5-large-smiles2caption", model_max_length=512)
model = T5ForConditionalGeneration.from_pretrained('laituan245/molt5-large-smiles2caption')

2.3 使用模型进行分子描述

以下是一个使用 molt5-large-smiles2caption 模型进行分子描述的示例代码:

input_text = 'C1=CC2=C(C(=C1)[O-])NC(=CC2=O)C(=O)O'
input_ids = tokenizer(input_text, return_tensors="pt").input_ids

outputs = model.generate(input_ids, num_beams=5, max_length=512)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

2.4 使用模型进行分子生成

以下是一个使用 molt5-large-caption2smiles 模型进行分子生成的示例代码:

tokenizer = T5Tokenizer.from_pretrained("laituan245/molt5-large-caption2smiles", model_max_length=512)
model = T5ForConditionalGeneration.from_pretrained('laituan245/molt5-large-caption2smiles')

input_text = 'The molecule is a monomethoxybenzene that is 2-methoxyphenol substituted by a hydroxymethyl group at position 4. It has a role as a plant metabolite. It is a member of guaiacols and a member of benzyl alcohols.'
input_ids = tokenizer(input_text, return_tensors="pt").input_ids

outputs = model.generate(input_ids, num_beams=5, max_length=512)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

3. 应用案例和最佳实践

3.1 分子描述

MolT5 可以用于生成分子的自然语言描述,这对于药物发现和化学研究非常有用。例如,给定一个分子的 SMILES 表示,MolT5 可以生成该分子的详细描述,包括其结构和功能。

3.2 分子生成

MolT5 还可以用于基于文本描述生成新的分子。这对于设计新的药物分子或材料非常有用。例如,给定一个描述特定性质的文本,MolT5 可以生成具有这些性质的分子。

3.3 数据增强

MolT5 可以用于数据增强,通过生成新的分子描述和分子来扩展现有的数据集。这对于训练更强大的机器学习模型非常有用。

4. 典型生态项目

4.1 T5X

T5X 是一个用于预训练和微调 T5 系列模型的框架。MolT5 使用了 T5X 框架进行模型的预训练和微调。

4.2 HuggingFace Transformers

HuggingFace Transformers 是一个广泛使用的自然语言处理库,提供了大量的预训练模型和工具。MolT5 的模型可以通过 HuggingFace Transformers 库进行加载和使用。

4.3 TensorFlow

TensorFlow 是一个广泛使用的机器学习框架,MolT5 使用了 TensorFlow 进行模型的训练和评估。

通过这些生态项目,MolT5 可以与其他工具和框架无缝集成,提供更强大的功能和更好的用户体验。

热门项目推荐
相关项目推荐

项目优选

收起
Python-100-DaysPython-100-Days
Python - 100天从新手到大师
Python
267
55
国产编程语言蓝皮书国产编程语言蓝皮书
《国产编程语言蓝皮书》-编委会工作区
65
17
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
196
45
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
53
44
HarmonyOS-ExamplesHarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
268
69
qwerty-learnerqwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
333
27
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
896
0
advanced-javaadvanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
419
108
MateChatMateChat
前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。 官网地址:https://matechat.gitcode.com
144
24
HarmonyOS-Cangjie-CasesHarmonyOS-Cangjie-Cases
参考 HarmonyOS-Cases/Cases,提供仓颉开发鸿蒙 NEXT 应用的案例集
Cangjie
58
4