MolT5 开源项目使用教程
1. 项目介绍
MolT5 是一个用于分子与自然语言之间翻译的自监督学习框架。该项目通过预训练模型在大量未标记的自然语言文本和分子字符串上,实现了新的、有用的和具有挑战性的视觉-语言任务的模拟,例如分子描述和基于文本的新分子生成。MolT5 通过在单模态数据上预训练模型,克服了化学领域数据稀缺的缺点。
2. 项目快速启动
2.1 环境准备
首先,确保你已经安装了 Python 3.7 或更高版本,并安装了所需的依赖包。你可以通过以下命令安装依赖:
pip install -r requirements.txt
2.2 下载预训练模型
MolT5 提供了多个预训练模型,你可以从 HuggingFace 模型库中下载。以下是下载 molt5-large-smiles2caption 模型的示例代码:
from transformers import T5Tokenizer, T5ForConditionalGeneration
tokenizer = T5Tokenizer.from_pretrained("laituan245/molt5-large-smiles2caption", model_max_length=512)
model = T5ForConditionalGeneration.from_pretrained('laituan245/molt5-large-smiles2caption')
2.3 使用模型进行分子描述
以下是一个使用 molt5-large-smiles2caption 模型进行分子描述的示例代码:
input_text = 'C1=CC2=C(C(=C1)[O-])NC(=CC2=O)C(=O)O'
input_ids = tokenizer(input_text, return_tensors="pt").input_ids
outputs = model.generate(input_ids, num_beams=5, max_length=512)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
2.4 使用模型进行分子生成
以下是一个使用 molt5-large-caption2smiles 模型进行分子生成的示例代码:
tokenizer = T5Tokenizer.from_pretrained("laituan245/molt5-large-caption2smiles", model_max_length=512)
model = T5ForConditionalGeneration.from_pretrained('laituan245/molt5-large-caption2smiles')
input_text = 'The molecule is a monomethoxybenzene that is 2-methoxyphenol substituted by a hydroxymethyl group at position 4. It has a role as a plant metabolite. It is a member of guaiacols and a member of benzyl alcohols.'
input_ids = tokenizer(input_text, return_tensors="pt").input_ids
outputs = model.generate(input_ids, num_beams=5, max_length=512)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
3. 应用案例和最佳实践
3.1 分子描述
MolT5 可以用于生成分子的自然语言描述,这对于药物发现和化学研究非常有用。例如,给定一个分子的 SMILES 表示,MolT5 可以生成该分子的详细描述,包括其结构和功能。
3.2 分子生成
MolT5 还可以用于基于文本描述生成新的分子。这对于设计新的药物分子或材料非常有用。例如,给定一个描述特定性质的文本,MolT5 可以生成具有这些性质的分子。
3.3 数据增强
MolT5 可以用于数据增强,通过生成新的分子描述和分子来扩展现有的数据集。这对于训练更强大的机器学习模型非常有用。
4. 典型生态项目
4.1 T5X
T5X 是一个用于预训练和微调 T5 系列模型的框架。MolT5 使用了 T5X 框架进行模型的预训练和微调。
4.2 HuggingFace Transformers
HuggingFace Transformers 是一个广泛使用的自然语言处理库,提供了大量的预训练模型和工具。MolT5 的模型可以通过 HuggingFace Transformers 库进行加载和使用。
4.3 TensorFlow
TensorFlow 是一个广泛使用的机器学习框架,MolT5 使用了 TensorFlow 进行模型的训练和评估。
通过这些生态项目,MolT5 可以与其他工具和框架无缝集成,提供更强大的功能和更好的用户体验。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00