pytest-asyncio 1.1.0a1版本发布:异步测试框架的重大更新
pytest-asyncio是一个流行的Python测试插件,它允许开发者在pytest框架中轻松编写和运行异步测试代码。这个插件为asyncio库提供了深度集成,使得测试异步代码变得像测试同步代码一样简单。最新发布的1.1.0a1版本带来了多项重要改进和修复,特别是在上下文变量传播和任务取消方面有了显著增强。
上下文变量传播的改进
在Python 3.10及更早版本中,pytest-asyncio现在能够正确传播ContextVars从异步fixture到其他fixture和测试用例。这一改进解决了长期存在的上下文变量在异步测试中丢失的问题,使得依赖上下文变量的代码能够更可靠地进行测试。
上下文变量(ContextVars)是Python 3.7引入的一种机制,用于在异步代码中维护"上下文"状态。在之前的版本中,当上下文变量从一个异步fixture传递到测试用例或其他fixture时,可能会出现丢失的情况。这个版本的改进确保了上下文状态在整个测试过程中保持一致,这对于测试依赖上下文管理的应用程序(如web框架)尤为重要。
任务取消机制的增强
1.1.0a1版本引入了loop_scope结束时自动取消任务的功能。这一改进解决了异步测试中潜在的任务泄漏问题,确保测试结束后所有创建的异步任务都会被正确清理。
在实际测试中,开发者可能会创建后台任务来模拟某些异步行为。如果这些任务没有被正确取消,可能会导致测试间相互干扰或资源泄漏。新版本的自动取消机制提高了测试的隔离性和可靠性,减少了因任务泄漏导致的难以诊断的问题。
事件循环关闭的警告机制
新版本增加了当测试关闭当前事件循环时的警告功能。这一改进帮助开发者及时发现可能影响后续测试的事件循环管理问题。
在异步测试中,不当的事件循环管理可能导致难以追踪的错误。例如,一个测试意外关闭了事件循环,而后续测试又尝试使用它,就会导致测试失败。新的警告机制让这类问题更容易被发现和修复。
重要问题修复
1.1.0a1版本修复了几个关键问题:
-
修复了在任务finally子句中调用需要事件循环的函数时出现的"missing loop"错误。这个问题影响了需要在清理阶段执行异步操作的测试场景。
-
解决了可能导致重复警告的问题,使测试输出更加清晰和有用。
兼容性说明
对于使用Python 3.10及更早版本的用户,新版本引入了对backports.asyncio.runner的运行时依赖。这个依赖提供了必要的兼容性支持,确保新功能在所有支持的Python版本上都能正常工作。
总结
pytest-asyncio 1.1.0a1版本通过增强上下文变量支持、改进任务生命周期管理和增加诊断功能,显著提升了异步测试的可靠性和开发者体验。这些改进使得测试异步代码更加健壮,减少了潜在的问题和调试时间。对于任何使用asyncio进行开发的Python项目,升级到这个版本将带来明显的测试质量提升。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
yuanrongopenYuanrong runtime:openYuanrong 多语言运行时提供函数分布式编程,支持 Python、Java、C++ 语言,实现类单机编程高性能分布式运行。Go051
pc-uishopTNT开源商城系统使用java语言开发,基于SpringBoot架构体系构建的一套b2b2c商城,商城是满足集平台自营和多商户入驻于一体的多商户运营服务系统。包含PC 端、手机端(H5\APP\小程序),系统架构以及实现案例中应满足和未来可能出现的业务系统进行对接。Vue00
ebook-to-mindmapepub、pdf 拆书 AI 总结TSX01