pytest-asyncio 1.0.0 版本发布:异步测试框架的重大更新
pytest-asyncio 是一个流行的 Python 测试插件,它允许开发者使用 pytest 框架来编写和运行异步测试代码。这个插件为 asyncio 库提供了无缝集成,使得测试异步代码变得简单直观。随着 Python 异步编程的普及,pytest-asyncio 已成为测试异步应用的重要工具。
重大变更:移除废弃功能
在 1.0.0 版本中,开发团队移除了已被废弃的 event_loop fixture。这是一个重要的清理工作,标志着项目向更简洁、更一致的 API 设计迈进。开发者应该确保他们的测试代码不再依赖这个已被移除的 fixture,转而使用项目推荐的其他方式来管理事件循环。
Python 3.14 初步支持
新版本增加了对 Python 3.14 的初步支持,这体现了项目维护团队对 Python 新版本的前瞻性关注。虽然 Python 3.14 尚未正式发布,但 pytest-asyncio 已经为即将到来的版本做好了准备,确保用户能够平滑过渡到未来的 Python 版本。
性能优化:作用域事件循环改进
1.0.0 版本对作用域事件循环(如模块作用域循环)的处理方式进行了重要优化。现在,这些循环只会创建一次,而不是在每个作用域(如每个模块)都创建。这一改变显著减少了 fixture 的数量,特别是对于大型测试套件,可以明显加快收集时间。
标记行为改进
pytest.mark.asyncio 装饰器的 loop_scope 参数行为得到了改进。现在,它不再强制要求存在与指定作用域级别匹配的 pytest Collector。例如,一个标记为 pytest.mark.asyncio(loop_scope="class") 的测试函数不再需要被类包围。这一变化使标记行为与 pytest_asyncio.fixture 的 scope 参数行为更加一致,提供了更大的灵活性。
问题修复
1.0.0 版本修复了多个重要问题:
- 解决了在使用 pytest 的
--setup-plan选项时出现的错误,提高了工具的兼容性。 - 修复了在使用
--doctest-ignore-import-errorspytest 选项时未抑制导入错误的问题。 - 解决了与包作用域循环相关的"fixture not found"错误,提高了工具的稳定性。
对下游打包者的说明
为了确保更好的打包体验,1.0.0 版本移除了一个有顺序依赖性的测试。这一改变使得 pytest-asyncio 在各种打包环境中的行为更加可靠和一致。
总结
pytest-asyncio 1.0.0 是一个重要的里程碑版本,它不仅移除了废弃功能,还带来了性能优化、行为改进和多个问题修复。这些变化使得这个异步测试工具更加成熟、稳定和高效。对于正在使用或考虑使用 pytest-asyncio 的开发者来说,升级到 1.0.0 版本将带来更好的测试体验和更可靠的测试结果。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00