PyTorch-Image-Models多GPU训练中的损失震荡问题分析与解决
2025-05-04 14:55:14作者:农烁颖Land
问题背景
在使用PyTorch-Image-Models(timm)库进行视觉Transformer模型训练时,研究人员发现了一个有趣的现象:当使用多GPU进行训练时,训练损失(train loss)会出现明显的震荡现象,而相同配置下使用单GPU训练则损失曲线更加平滑。这种现象在Mini-ImageNet和ImageNet-1K数据集上都得到了验证。
现象描述
具体表现为:
- 使用2个GPU,每个GPU批大小为288(总批大小576)时,训练损失曲线出现剧烈震荡
- 使用1个GPU,批大小为576时,训练损失曲线平滑下降
- 使用1个GPU,批大小为288但梯度累积步数为2(等效总批大小576)时,同样没有出现剧烈震荡
技术分析
经过深入调查,发现这个问题源于损失值记录方式的差异,而非实际的训练过程存在问题。在多GPU训练场景下,原始实现中的损失平均计算存在以下特点:
- 为了简化实现和避免每一步都进行同步操作,原始代码只在日志记录间隔(log interval)时才进行损失值的规约(reduction)操作
- 这种实现导致损失记录是稀疏采样的,不能反映所有批次的真实平均损失
- 实际上训练过程和模型参数更新是正确的,只是记录的损失值不能准确反映训练状态
解决方案
项目维护者提出了以下改进措施:
- 修改损失记录机制,使其在每一步都保持运行平均值
- 仅在日志记录和最终返回时才进行同步操作
- 这种改进既保持了高效的训练过程,又提供了更准确的损失曲线
验证结果
改进后的实现经过验证:
- 多GPU训练时的损失曲线变得平滑,与单GPU训练结果一致
- 评估指标(eval loss和accuracy)在多GPU和单GPU训练下表现相当
- 训练稳定性得到提升,不再出现训练中断的情况
技术建议
对于使用timm库的研究人员,建议注意以下几点:
- 在多GPU训练时,确保使用最新版本的代码库
- 对于小型数据集,适当调整EMA(指数移动平均)参数,建议使用0.999范围而非0.99996
- 考虑使用--model-ema-warmup参数来改善EMA的初始化
- 不同GPU数量会导致数据顺序变化,这可能导致训练曲线有微小差异,属于正常现象
总结
这个案例展示了深度学习框架中实现细节对训练监控的重要性。虽然原始实现在实际训练过程上是正确的,但不够直观的监控指标可能会误导研究人员。通过改进损失记录机制,timm库现在能够提供更准确、更平滑的训练曲线,帮助研究人员更好地理解和监控模型训练过程。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
405
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355