PyTorch-Image-Models多GPU训练中的损失震荡问题分析与解决
2025-05-04 08:47:18作者:农烁颖Land
问题背景
在使用PyTorch-Image-Models(timm)库进行视觉Transformer模型训练时,研究人员发现了一个有趣的现象:当使用多GPU进行训练时,训练损失(train loss)会出现明显的震荡现象,而相同配置下使用单GPU训练则损失曲线更加平滑。这种现象在Mini-ImageNet和ImageNet-1K数据集上都得到了验证。
现象描述
具体表现为:
- 使用2个GPU,每个GPU批大小为288(总批大小576)时,训练损失曲线出现剧烈震荡
- 使用1个GPU,批大小为576时,训练损失曲线平滑下降
- 使用1个GPU,批大小为288但梯度累积步数为2(等效总批大小576)时,同样没有出现剧烈震荡
技术分析
经过深入调查,发现这个问题源于损失值记录方式的差异,而非实际的训练过程存在问题。在多GPU训练场景下,原始实现中的损失平均计算存在以下特点:
- 为了简化实现和避免每一步都进行同步操作,原始代码只在日志记录间隔(log interval)时才进行损失值的规约(reduction)操作
- 这种实现导致损失记录是稀疏采样的,不能反映所有批次的真实平均损失
- 实际上训练过程和模型参数更新是正确的,只是记录的损失值不能准确反映训练状态
解决方案
项目维护者提出了以下改进措施:
- 修改损失记录机制,使其在每一步都保持运行平均值
- 仅在日志记录和最终返回时才进行同步操作
- 这种改进既保持了高效的训练过程,又提供了更准确的损失曲线
验证结果
改进后的实现经过验证:
- 多GPU训练时的损失曲线变得平滑,与单GPU训练结果一致
- 评估指标(eval loss和accuracy)在多GPU和单GPU训练下表现相当
- 训练稳定性得到提升,不再出现训练中断的情况
技术建议
对于使用timm库的研究人员,建议注意以下几点:
- 在多GPU训练时,确保使用最新版本的代码库
- 对于小型数据集,适当调整EMA(指数移动平均)参数,建议使用0.999范围而非0.99996
- 考虑使用--model-ema-warmup参数来改善EMA的初始化
- 不同GPU数量会导致数据顺序变化,这可能导致训练曲线有微小差异,属于正常现象
总结
这个案例展示了深度学习框架中实现细节对训练监控的重要性。虽然原始实现在实际训练过程上是正确的,但不够直观的监控指标可能会误导研究人员。通过改进损失记录机制,timm库现在能够提供更准确、更平滑的训练曲线,帮助研究人员更好地理解和监控模型训练过程。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
249
2.48 K
deepin linux kernel
C
24
6
Ascend Extension for PyTorch
Python
90
119
暂无简介
Dart
548
119
React Native鸿蒙化仓库
JavaScript
217
298
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.02 K
600
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
592
126
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
411
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
356
1.75 K
openGauss kernel ~ openGauss is an open source relational database management system
C++
153
204