AMD MIGraphX 使用教程
项目介绍
AMD MIGraphX 是 AMD 的图形推理引擎,用于加速机器学习模型的推理。MIGraphX 支持从 ONNX 或 TensorFlow 导入模型,并提供了 C++ 和 Python 的 API 来编译、保存、加载和运行这些模型。MIGraphX 通过内部图表示将模型中的每个操作映射到 MIGraphX 中的操作,并进行一系列优化,如操作融合、算术简化、死代码消除、公共子表达式消除和常量传播。最终,MIGraphX 通过调用 MIOpen 或 rocBLAS 或创建 HIP 内核来为目标 AMD GPU 生成代码,也可以使用 DNNL 或 ZenDNN 库来支持 CPU。
项目快速启动
安装 MIGraphX
首先,确保已经安装了 ROCm。然后可以通过以下命令安装 MIGraphX:
sudo apt update && sudo apt install -y migraphx
编译和运行示例
以下是一个简单的 Python 示例,展示如何使用 MIGraphX 加载和运行一个 ONNX 模型:
import migraphx
# 加载 ONNX 模型
model = migraphx.parse_onnx("path/to/your/model.onnx")
# 编译模型
model.compile(migraphx.get_target("gpu"))
# 准备输入数据
input_data = {"input_name": migraphx.generate_argument(model.get_parameter_shapes()["input_name"])}
# 运行模型
output = model.run(input_data)
print(output)
应用案例和最佳实践
性能调优
MIGraphX 使用 MIOpen 内核来针对 AMD GPU。为了获得最佳性能,可以对 MIOpen 进行调优。设置环境变量 MIOPEN_FIND_ENFORCE=3
可以启动调优过程:
export MIOPEN_FIND_ENFORCE=3
调优过程可能需要较长时间,但可以显著提升性能。例如,在 ROCm v4.5 和 MI100 GPU 上,经过调优的 Inception 模型的平均推理时间从 0.01383ms 降低到 0.00459ms,性能提升了 3 倍。
模型优化
MIGraphX 提供了一系列优化技术,包括操作融合、算术简化、死代码消除、公共子表达式消除和常量传播。这些优化可以显著提升模型的推理性能。
典型生态项目
ROCm
ROCm 是 AMD 的开源 GPU 计算平台和编程模型,为深度学习和高性能计算提供了强大的支持。MIGraphX 作为 ROCm 生态系统的一部分,充分利用了 ROCm 提供的 GPU 计算能力。
MIOpen
MIOpen 是 AMD 的开源深度学习库,提供了高性能的 GPU 加速卷积神经网络操作。MIGraphX 使用 MIOpen 来实现对 AMD GPU 的高效支持。
rocBLAS
rocBLAS 是 AMD 的开源基本线性代数子程序库,提供了高性能的 GPU 加速线性代数操作。MIGraphX 在需要时会调用 rocBLAS 来加速特定的操作。
通过这些生态项目的协同工作,MIGraphX 能够为机器学习模型的推理提供高效、强大的支持。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++095AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









