首页
/ AMD MIGraphX 使用教程

AMD MIGraphX 使用教程

2024-08-30 18:16:48作者:冯梦姬Eddie

项目介绍

AMD MIGraphX 是 AMD 的图形推理引擎,用于加速机器学习模型的推理。MIGraphX 支持从 ONNX 或 TensorFlow 导入模型,并提供了 C++ 和 Python 的 API 来编译、保存、加载和运行这些模型。MIGraphX 通过内部图表示将模型中的每个操作映射到 MIGraphX 中的操作,并进行一系列优化,如操作融合、算术简化、死代码消除、公共子表达式消除和常量传播。最终,MIGraphX 通过调用 MIOpen 或 rocBLAS 或创建 HIP 内核来为目标 AMD GPU 生成代码,也可以使用 DNNL 或 ZenDNN 库来支持 CPU。

项目快速启动

安装 MIGraphX

首先,确保已经安装了 ROCm。然后可以通过以下命令安装 MIGraphX:

sudo apt update && sudo apt install -y migraphx

编译和运行示例

以下是一个简单的 Python 示例,展示如何使用 MIGraphX 加载和运行一个 ONNX 模型:

import migraphx

# 加载 ONNX 模型
model = migraphx.parse_onnx("path/to/your/model.onnx")

# 编译模型
model.compile(migraphx.get_target("gpu"))

# 准备输入数据
input_data = {"input_name": migraphx.generate_argument(model.get_parameter_shapes()["input_name"])}

# 运行模型
output = model.run(input_data)

print(output)

应用案例和最佳实践

性能调优

MIGraphX 使用 MIOpen 内核来针对 AMD GPU。为了获得最佳性能,可以对 MIOpen 进行调优。设置环境变量 MIOPEN_FIND_ENFORCE=3 可以启动调优过程:

export MIOPEN_FIND_ENFORCE=3

调优过程可能需要较长时间,但可以显著提升性能。例如,在 ROCm v4.5 和 MI100 GPU 上,经过调优的 Inception 模型的平均推理时间从 0.01383ms 降低到 0.00459ms,性能提升了 3 倍。

模型优化

MIGraphX 提供了一系列优化技术,包括操作融合、算术简化、死代码消除、公共子表达式消除和常量传播。这些优化可以显著提升模型的推理性能。

典型生态项目

ROCm

ROCm 是 AMD 的开源 GPU 计算平台和编程模型,为深度学习和高性能计算提供了强大的支持。MIGraphX 作为 ROCm 生态系统的一部分,充分利用了 ROCm 提供的 GPU 计算能力。

MIOpen

MIOpen 是 AMD 的开源深度学习库,提供了高性能的 GPU 加速卷积神经网络操作。MIGraphX 使用 MIOpen 来实现对 AMD GPU 的高效支持。

rocBLAS

rocBLAS 是 AMD 的开源基本线性代数子程序库,提供了高性能的 GPU 加速线性代数操作。MIGraphX 在需要时会调用 rocBLAS 来加速特定的操作。

通过这些生态项目的协同工作,MIGraphX 能够为机器学习模型的推理提供高效、强大的支持。

热门项目推荐
相关项目推荐

项目优选

收起
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
828
0
redis-sdkredis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
376
32
advanced-javaadvanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learnerqwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
9
1
Yi-CoderYi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-VueRuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
markdown4cjmarkdown4cj
一个markdown解析和展示的库
Cangjie
10
1