NVIDIA Cosmos-Predict2项目:AgiBot鱼眼视频到世界模型的迁移训练指南
2025-06-19 21:11:53作者:廉皓灿Ida
概述
本文详细介绍如何在NVIDIA Cosmos-Predict2项目中使用Video2World模型对AgiBotWorld-Alpha数据集进行迁移训练(post-training)。通过本教程,您将掌握从数据准备到模型训练再到推理应用的完整流程,特别针对鱼眼相机采集的机器人操作视频数据。
环境准备
在开始训练前,需要确保满足以下条件:
- 软件环境:完成基础环境的配置,包括Python环境、CUDA工具链和必要的深度学习框架
- 模型权重:获取预训练的Video2World模型检查点文件
- 硬件要求:建议使用高性能GPU集群,特别是对于14B参数的大模型
数据准备
1.1 获取AgiBotWorld-Alpha数据集
我们使用AgiBotWorld-Alpha数据集的子集作为示例,该数据集包含机器人操作场景的鱼眼相机视频:
- 获取数据集访问权限并完成用户认证
- 接受AgiBot World社区许可协议
- 下载特定任务编号(如task 327)的数据
数据集下载和处理完成后,目录结构如下:
agibot_head_center_fisheye_color/
├── train/ # 训练集
│ ├── metas/ # 元数据
│ ├── videos/ # 视频文件
└── val/ # 验证集
├── metas/
├── videos/
1.2 数据预处理
为视频描述文本生成T5-XXL嵌入表示:
# 为训练集生成嵌入
PYTHONPATH=$(pwd) python scripts/get_t5_embeddings.py --dataset_path datasets/agibot_head_center_fisheye_color/train
# 为验证集生成嵌入
PYTHONPATH=$(pwd) python scripts/get_t5_embeddings.py --dataset_path datasets/agibot_head_center_fisheye_color/val
预处理完成后,数据集目录会增加t5_xxl子目录,包含所有视频描述的嵌入文件。
模型训练
2.1 2B参数模型训练
执行以下命令启动2B参数模型的迁移训练:
EXP=predict2_video2world_training_2b_agibot_head_center_fisheye_color
torchrun --nproc_per_node=8 --master_port=12341 -m scripts.train \
--config=cosmos_predict2/configs/base/config.py --experiment=${EXP}
关键配置说明:
- 使用8个GPU进行数据并行训练
- 训练数据来自agibot_head_center_fisheye_color数据集
- 检查点保存在指定目录结构中
2.2 14B参数模型训练
对于更大的14B参数模型,需要更多计算资源:
EXP=predict2_video2world_training_14b_agibot_head_center_fisheye_color
torchrun --nproc_per_node=8 --nnodes=4 --rdzv_id 123 --rdzv_backend c10d \
--rdzv_endpoint $MASTER_ADDR:1234 -m scripts.train \
--config=cosmos_predict2/configs/base/config.py --experiment=${EXP}
训练选项:
- 使用4个节点,每个节点8个GPU(共32个GPU)
- 支持LoRA(Low-Rank Adaptation)训练方式,可减少显存占用
2.3 训练性能参考
不同硬件上的训练迭代速度对比:
| GPU型号 | 2B模型迭代时间 | 14B模型迭代时间 |
|---|---|---|
| NVIDIA B200 | 6.05秒 | 6.27秒 |
| NVIDIA H100 | 10.07秒 | 8.72秒 |
| NVIDIA A100 | 22.5秒 | 22.14秒 |
注意:在Blackwell架构GPU上训练时,需要特别设置注意力机制后端。
模型推理
3.1 使用训练好的模型生成视频
以2B模型为例,使用迁移训练后的检查点进行推理:
PROMPT="视频展示了一个人形机器人在超市环境中从货架上拿取香菇的场景..."
CUDA_HOME=$CONDA_PREFIX PYTHONPATH=$(pwd) python examples/video2world.py \
--model_size 2B \
--dit_path "checkpoints/.../iter_000001000.pt" \
--prompt "${PROMPT}" \
--input_path "datasets/.../val/task_327_...mp4" \
--num_conditional_frames 1 \
--save_path results/generated_video_2b.mp4
参数说明:
model_size: 指定模型规模(2B或14B)dit_path: 训练好的检查点路径prompt: 描述生成场景的文本input_path: 条件视频路径num_conditional_frames: 使用的条件帧数
总结
本文详细介绍了在Cosmos-Predict2项目中对Video2World模型进行迁移训练的完整流程。通过使用AgiBotWorld-Alpha数据集,特别是鱼眼相机采集的机器人操作视频,可以显著提升模型在特定领域的表现。无论是2B还是14B参数的模型,都提供了完整的训练和推理方案,用户可以根据自身硬件条件选择合适的模型规模。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C046
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0124
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 开源电子设计自动化利器:KiCad EDA全方位使用指南 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.32 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
699
162
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
697
374
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
676
Ascend Extension for PyTorch
Python
245
282
React Native鸿蒙化仓库
JavaScript
272
328