NVIDIA Cosmos-Predict2项目:AgiBot鱼眼视频到世界模型的迁移训练指南
2025-06-19 23:42:23作者:廉皓灿Ida
概述
本文详细介绍如何在NVIDIA Cosmos-Predict2项目中使用Video2World模型对AgiBotWorld-Alpha数据集进行迁移训练(post-training)。通过本教程,您将掌握从数据准备到模型训练再到推理应用的完整流程,特别针对鱼眼相机采集的机器人操作视频数据。
环境准备
在开始训练前,需要确保满足以下条件:
- 软件环境:完成基础环境的配置,包括Python环境、CUDA工具链和必要的深度学习框架
- 模型权重:获取预训练的Video2World模型检查点文件
- 硬件要求:建议使用高性能GPU集群,特别是对于14B参数的大模型
数据准备
1.1 获取AgiBotWorld-Alpha数据集
我们使用AgiBotWorld-Alpha数据集的子集作为示例,该数据集包含机器人操作场景的鱼眼相机视频:
- 获取数据集访问权限并完成用户认证
- 接受AgiBot World社区许可协议
- 下载特定任务编号(如task 327)的数据
数据集下载和处理完成后,目录结构如下:
agibot_head_center_fisheye_color/
├── train/ # 训练集
│ ├── metas/ # 元数据
│ ├── videos/ # 视频文件
└── val/ # 验证集
├── metas/
├── videos/
1.2 数据预处理
为视频描述文本生成T5-XXL嵌入表示:
# 为训练集生成嵌入
PYTHONPATH=$(pwd) python scripts/get_t5_embeddings.py --dataset_path datasets/agibot_head_center_fisheye_color/train
# 为验证集生成嵌入
PYTHONPATH=$(pwd) python scripts/get_t5_embeddings.py --dataset_path datasets/agibot_head_center_fisheye_color/val
预处理完成后,数据集目录会增加t5_xxl子目录,包含所有视频描述的嵌入文件。
模型训练
2.1 2B参数模型训练
执行以下命令启动2B参数模型的迁移训练:
EXP=predict2_video2world_training_2b_agibot_head_center_fisheye_color
torchrun --nproc_per_node=8 --master_port=12341 -m scripts.train \
--config=cosmos_predict2/configs/base/config.py --experiment=${EXP}
关键配置说明:
- 使用8个GPU进行数据并行训练
- 训练数据来自agibot_head_center_fisheye_color数据集
- 检查点保存在指定目录结构中
2.2 14B参数模型训练
对于更大的14B参数模型,需要更多计算资源:
EXP=predict2_video2world_training_14b_agibot_head_center_fisheye_color
torchrun --nproc_per_node=8 --nnodes=4 --rdzv_id 123 --rdzv_backend c10d \
--rdzv_endpoint $MASTER_ADDR:1234 -m scripts.train \
--config=cosmos_predict2/configs/base/config.py --experiment=${EXP}
训练选项:
- 使用4个节点,每个节点8个GPU(共32个GPU)
- 支持LoRA(Low-Rank Adaptation)训练方式,可减少显存占用
2.3 训练性能参考
不同硬件上的训练迭代速度对比:
| GPU型号 | 2B模型迭代时间 | 14B模型迭代时间 |
|---|---|---|
| NVIDIA B200 | 6.05秒 | 6.27秒 |
| NVIDIA H100 | 10.07秒 | 8.72秒 |
| NVIDIA A100 | 22.5秒 | 22.14秒 |
注意:在Blackwell架构GPU上训练时,需要特别设置注意力机制后端。
模型推理
3.1 使用训练好的模型生成视频
以2B模型为例,使用迁移训练后的检查点进行推理:
PROMPT="视频展示了一个人形机器人在超市环境中从货架上拿取香菇的场景..."
CUDA_HOME=$CONDA_PREFIX PYTHONPATH=$(pwd) python examples/video2world.py \
--model_size 2B \
--dit_path "checkpoints/.../iter_000001000.pt" \
--prompt "${PROMPT}" \
--input_path "datasets/.../val/task_327_...mp4" \
--num_conditional_frames 1 \
--save_path results/generated_video_2b.mp4
参数说明:
model_size: 指定模型规模(2B或14B)dit_path: 训练好的检查点路径prompt: 描述生成场景的文本input_path: 条件视频路径num_conditional_frames: 使用的条件帧数
总结
本文详细介绍了在Cosmos-Predict2项目中对Video2World模型进行迁移训练的完整流程。通过使用AgiBotWorld-Alpha数据集,特别是鱼眼相机采集的机器人操作视频,可以显著提升模型在特定领域的表现。无论是2B还是14B参数的模型,都提供了完整的训练和推理方案,用户可以根据自身硬件条件选择合适的模型规模。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
651
149
Ascend Extension for PyTorch
Python
212
222
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
20
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
656
291
openGauss kernel ~ openGauss is an open source relational database management system
C++
159
216
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.17 K
640
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
251
319