NVIDIA Cosmos-Predict2项目:AgiBot鱼眼视频到世界模型的迁移训练指南
2025-06-19 01:40:36作者:廉皓灿Ida
概述
本文详细介绍如何在NVIDIA Cosmos-Predict2项目中使用Video2World模型对AgiBotWorld-Alpha数据集进行迁移训练(post-training)。通过本教程,您将掌握从数据准备到模型训练再到推理应用的完整流程,特别针对鱼眼相机采集的机器人操作视频数据。
环境准备
在开始训练前,需要确保满足以下条件:
- 软件环境:完成基础环境的配置,包括Python环境、CUDA工具链和必要的深度学习框架
- 模型权重:获取预训练的Video2World模型检查点文件
- 硬件要求:建议使用高性能GPU集群,特别是对于14B参数的大模型
数据准备
1.1 获取AgiBotWorld-Alpha数据集
我们使用AgiBotWorld-Alpha数据集的子集作为示例,该数据集包含机器人操作场景的鱼眼相机视频:
- 获取数据集访问权限并完成用户认证
- 接受AgiBot World社区许可协议
- 下载特定任务编号(如task 327)的数据
数据集下载和处理完成后,目录结构如下:
agibot_head_center_fisheye_color/
├── train/ # 训练集
│ ├── metas/ # 元数据
│ ├── videos/ # 视频文件
└── val/ # 验证集
├── metas/
├── videos/
1.2 数据预处理
为视频描述文本生成T5-XXL嵌入表示:
# 为训练集生成嵌入
PYTHONPATH=$(pwd) python scripts/get_t5_embeddings.py --dataset_path datasets/agibot_head_center_fisheye_color/train
# 为验证集生成嵌入
PYTHONPATH=$(pwd) python scripts/get_t5_embeddings.py --dataset_path datasets/agibot_head_center_fisheye_color/val
预处理完成后,数据集目录会增加t5_xxl子目录,包含所有视频描述的嵌入文件。
模型训练
2.1 2B参数模型训练
执行以下命令启动2B参数模型的迁移训练:
EXP=predict2_video2world_training_2b_agibot_head_center_fisheye_color
torchrun --nproc_per_node=8 --master_port=12341 -m scripts.train \
--config=cosmos_predict2/configs/base/config.py --experiment=${EXP}
关键配置说明:
- 使用8个GPU进行数据并行训练
- 训练数据来自agibot_head_center_fisheye_color数据集
- 检查点保存在指定目录结构中
2.2 14B参数模型训练
对于更大的14B参数模型,需要更多计算资源:
EXP=predict2_video2world_training_14b_agibot_head_center_fisheye_color
torchrun --nproc_per_node=8 --nnodes=4 --rdzv_id 123 --rdzv_backend c10d \
--rdzv_endpoint $MASTER_ADDR:1234 -m scripts.train \
--config=cosmos_predict2/configs/base/config.py --experiment=${EXP}
训练选项:
- 使用4个节点,每个节点8个GPU(共32个GPU)
- 支持LoRA(Low-Rank Adaptation)训练方式,可减少显存占用
2.3 训练性能参考
不同硬件上的训练迭代速度对比:
| GPU型号 | 2B模型迭代时间 | 14B模型迭代时间 |
|---|---|---|
| NVIDIA B200 | 6.05秒 | 6.27秒 |
| NVIDIA H100 | 10.07秒 | 8.72秒 |
| NVIDIA A100 | 22.5秒 | 22.14秒 |
注意:在Blackwell架构GPU上训练时,需要特别设置注意力机制后端。
模型推理
3.1 使用训练好的模型生成视频
以2B模型为例,使用迁移训练后的检查点进行推理:
PROMPT="视频展示了一个人形机器人在超市环境中从货架上拿取香菇的场景..."
CUDA_HOME=$CONDA_PREFIX PYTHONPATH=$(pwd) python examples/video2world.py \
--model_size 2B \
--dit_path "checkpoints/.../iter_000001000.pt" \
--prompt "${PROMPT}" \
--input_path "datasets/.../val/task_327_...mp4" \
--num_conditional_frames 1 \
--save_path results/generated_video_2b.mp4
参数说明:
model_size: 指定模型规模(2B或14B)dit_path: 训练好的检查点路径prompt: 描述生成场景的文本input_path: 条件视频路径num_conditional_frames: 使用的条件帧数
总结
本文详细介绍了在Cosmos-Predict2项目中对Video2World模型进行迁移训练的完整流程。通过使用AgiBotWorld-Alpha数据集,特别是鱼眼相机采集的机器人操作视频,可以显著提升模型在特定领域的表现。无论是2B还是14B参数的模型,都提供了完整的训练和推理方案,用户可以根据自身硬件条件选择合适的模型规模。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
241
2.38 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
216
291
暂无简介
Dart
539
118
仓颉编译器源码及 cjdb 调试工具。
C++
115
86
仓颉编程语言运行时与标准库。
Cangjie
122
97
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1 K
589
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
590
118
Ascend Extension for PyTorch
Python
79
112
仓颉编程语言提供了 stdx 模块,该模块提供了网络、安全等领域的通用能力。
Cangjie
80
56