TADW 项目教程
2024-09-18 03:22:46作者:郦嵘贵Just
1. 项目介绍
TADW(Text Attributed Deep Walk)是一个节点嵌入算法,它通过学习节点的嵌入并将节点表示与节点属性融合,从而在网络表示学习中引入丰富的文本信息。TADW 通过正则化的非负矩阵分解(NMF)来学习联合特征-近邻表示。该算法能够将节点放置在一个抽象的特征空间中,保留固定顺序近邻的信息,并将近邻的属性也纳入表示中。
TADW 的主要特点包括:
- 节点嵌入:学习节点的低维表示。
- 属性融合:将节点属性与节点表示融合。
- 非负矩阵分解:使用正则化的非负矩阵分解来优化嵌入。
2. 项目快速启动
环境准备
首先,确保你已经安装了 Python 2.7 以及以下依赖包:
pip install networkx==2.4 tqdm==4.28.1 numpy==1.15.4 pandas==0.23.4 texttable==1.5.0 scipy==1.1.0 argparse==1.1.0
下载项目
使用 Git 克隆项目到本地:
git clone https://github.com/albertyang33/TADW.git
cd TADW
运行示例
以下命令将使用默认参数运行 TADW 算法,并生成一个嵌入文件:
python src/main.py
自定义参数
你可以通过命令行参数自定义 TADW 的运行参数。例如,设置嵌入维度为 128,近邻阶数为 1:
python src/main.py --dimensions 128 --order 1
3. 应用案例和最佳实践
应用案例
TADW 可以应用于多种场景,包括但不限于:
- 社交网络分析:通过融合用户属性和社交关系,生成更丰富的用户表示。
- 推荐系统:结合用户属性和用户行为数据,提升推荐系统的准确性。
- 生物信息学:在基因网络中,通过融合基因属性和基因关系,生成更全面的基因表示。
最佳实践
- 数据预处理:确保输入的图数据和特征矩阵格式正确,特别是稀疏特征矩阵的 JSON 格式。
- 参数调优:根据具体应用场景调整嵌入维度、近邻阶数、学习率等参数,以获得最佳性能。
- 结果评估:使用下游任务(如分类、聚类等)评估生成的嵌入质量,并根据评估结果进一步优化参数。
4. 典型生态项目
Karate Club
Karate Club 是一个用于图嵌入和图神经网络的开源 Python 库,包含了多种图嵌入算法,包括 TADW。Karate Club 提供了统一的接口和丰富的功能,方便用户进行图数据的分析和处理。
NetworkX
NetworkX 是一个用于创建、操作和研究复杂网络的 Python 库。TADW 使用 NetworkX 来处理图数据,用户可以通过 NetworkX 进行图的构建、分析和可视化。
SciPy
SciPy 是一个开源的 Python 库,用于科学计算和数据分析。TADW 使用 SciPy 进行矩阵运算和优化,提供了强大的数学和统计工具。
通过结合这些生态项目,用户可以更高效地进行图数据的处理和分析,进一步提升 TADW 的应用效果。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0131
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
496
3.64 K
Ascend Extension for PyTorch
Python
300
338
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
307
131
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
868
479
暂无简介
Dart
744
180
React Native鸿蒙化仓库
JavaScript
297
346
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
66
20
仓颉编译器源码及 cjdb 调试工具。
C++
150
882