Pingouin库中处理多分类协变量的偏相关分析指南
2025-07-08 04:11:29作者:何将鹤
背景介绍
Pingouin是一个基于Python的统计库,提供了pg.partial_corr函数用于计算偏相关系数。在实际数据分析中,我们经常需要控制协变量的影响来研究两个变量之间的真实关系。当协变量是分类变量且具有多个水平时(如不同研究来源、实验批次等),需要特别注意处理方法。
多分类协变量的处理方案
对于具有三个或更多水平的分类协变量(如study_1、study_2、study_3),直接使用原始分类变量会导致分析错误,因为Pingouin会默认将其视为连续变量。正确的处理方法是使用虚拟编码(dummy coding)。
虚拟编码实现步骤
- 创建虚拟变量:将K个水平的分类变量转换为K-1个二元虚拟变量
- 选择参考水平:省略一个水平作为参考组(通常选择第一个或最后一个水平)
- 纳入分析:将所有虚拟变量作为协变量传入pg.partial_corr函数
Python实现示例
import pandas as pd
import pingouin as pg
# 假设原始数据
data = pd.DataFrame({
'x': [1.2, 2.3, 3.1, 4.5, 5.6],
'y': [2.1, 3.2, 4.3, 5.4, 6.5],
'study': ['study_1', 'study_2', 'study_3', 'study_1', 'study_2']
})
# 创建虚拟变量
dummies = pd.get_dummies(data['study'], drop_first=True)
# 合并到原始数据
data = pd.concat([data, dummies], axis=1)
# 计算偏相关,控制研究来源的影响
result = pg.partial_corr(data=data, x='x', y='y', covar=['study_2', 'study_3'])
print(result)
技术原理
虚拟编码的本质是将分类变量转换为设计矩阵,使得每个虚拟变量代表特定水平与参考水平之间的对比。这种方法确保了:
- 各水平间的非线性关系被正确建模
- 避免了将分类变量误认为连续变量的问题
- 保持了统计模型的解释性
注意事项
- 参考水平选择:虽然技术上可以选择任意水平作为参考,但应根据研究目的选择有意义的参考组
- 多重共线性:确保不要包含所有虚拟变量(即必须省略一个水平),否则会导致完全共线性
- 结果解释:偏相关系数表示在控制研究来源影响后,x和y之间的线性关系
替代方案
除了虚拟编码,还可以考虑:
- 效应编码:适用于某些特定的研究设计
- 对比编码:当有特定的先验假设时使用
- 混合效应模型:对于嵌套数据结构可能更合适
结论
在Pingouin中进行偏相关分析时,正确处理多分类协变量是获得可靠结果的关键。虚拟编码是最常用且可靠的方法,能够准确控制分类协变量的影响,确保分析结果的准确性。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 Python开发者的macOS终极指南:VSCode安装配置全攻略 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 STM32到GD32项目移植完全指南:从兼容性到实战技巧
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
404
3.14 K
Ascend Extension for PyTorch
Python
224
250
暂无简介
Dart
672
159
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
319
React Native鸿蒙化仓库
JavaScript
262
325
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
657
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
220