Pingouin库中处理多分类协变量的偏相关分析指南
2025-07-08 03:47:19作者:何将鹤
背景介绍
Pingouin是一个基于Python的统计库,提供了pg.partial_corr函数用于计算偏相关系数。在实际数据分析中,我们经常需要控制协变量的影响来研究两个变量之间的真实关系。当协变量是分类变量且具有多个水平时(如不同研究来源、实验批次等),需要特别注意处理方法。
多分类协变量的处理方案
对于具有三个或更多水平的分类协变量(如study_1、study_2、study_3),直接使用原始分类变量会导致分析错误,因为Pingouin会默认将其视为连续变量。正确的处理方法是使用虚拟编码(dummy coding)。
虚拟编码实现步骤
- 创建虚拟变量:将K个水平的分类变量转换为K-1个二元虚拟变量
- 选择参考水平:省略一个水平作为参考组(通常选择第一个或最后一个水平)
- 纳入分析:将所有虚拟变量作为协变量传入pg.partial_corr函数
Python实现示例
import pandas as pd
import pingouin as pg
# 假设原始数据
data = pd.DataFrame({
'x': [1.2, 2.3, 3.1, 4.5, 5.6],
'y': [2.1, 3.2, 4.3, 5.4, 6.5],
'study': ['study_1', 'study_2', 'study_3', 'study_1', 'study_2']
})
# 创建虚拟变量
dummies = pd.get_dummies(data['study'], drop_first=True)
# 合并到原始数据
data = pd.concat([data, dummies], axis=1)
# 计算偏相关,控制研究来源的影响
result = pg.partial_corr(data=data, x='x', y='y', covar=['study_2', 'study_3'])
print(result)
技术原理
虚拟编码的本质是将分类变量转换为设计矩阵,使得每个虚拟变量代表特定水平与参考水平之间的对比。这种方法确保了:
- 各水平间的非线性关系被正确建模
- 避免了将分类变量误认为连续变量的问题
- 保持了统计模型的解释性
注意事项
- 参考水平选择:虽然技术上可以选择任意水平作为参考,但应根据研究目的选择有意义的参考组
- 多重共线性:确保不要包含所有虚拟变量(即必须省略一个水平),否则会导致完全共线性
- 结果解释:偏相关系数表示在控制研究来源影响后,x和y之间的线性关系
替代方案
除了虚拟编码,还可以考虑:
- 效应编码:适用于某些特定的研究设计
- 对比编码:当有特定的先验假设时使用
- 混合效应模型:对于嵌套数据结构可能更合适
结论
在Pingouin中进行偏相关分析时,正确处理多分类协变量是获得可靠结果的关键。虚拟编码是最常用且可靠的方法,能够准确控制分类协变量的影响,确保分析结果的准确性。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.75 K
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
754
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
179
AscendNPU-IR
C++
86
141
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
248