Pingouin库中效应量计算方法的正确使用方式
2025-07-08 11:52:00作者:明树来
在统计分析中,效应量(effect size)是衡量两组数据差异程度的重要指标。Cohen's d和Hedges' g是两种常用的标准化效应量指标。本文通过一个实际案例,说明如何正确使用Python的Pingouin库计算这些效应量。
问题背景
许多用户在从R转向Python时,会尝试使用Pingouin库的compute_effsize函数来计算效应量。然而,如果不理解函数的正确使用方式,可能会得到完全错误的结果。
错误示范
原始问题中展示的错误使用方式是:
x = survey['Height']
y = survey['Sex'].map({'Male': 0, 'Female': 1})
pg.compute_effsize(x, y, eftype='cohen')
这种用法是错误的,因为它将连续变量(Height)和分类变量(Sex)直接传入函数,导致函数无法正确识别哪部分是组别信息。
正确使用方法
正确的做法应该是先按组别分离数据,然后计算效应量:
# 按性别分离身高数据
male_height = survey[survey["Sex"] == "Male"]['Height']
female_height = survey[survey["Sex"] == "Female"]['Height']
# 计算Cohen's d
cohen_d = pg.compute_effsize(male_height, female_height, eftype='cohen')
# 计算Hedges' g
hedges_g = pg.compute_effsize(male_height, female_height, eftype='hedges')
计算原理
Cohen's d的计算公式为:
d = (mean1 - mean2) / pooled_std
Hedges' g是对Cohen's d的小样本校正:
g = d * (1 - 3/(4*(n1+n2-2)-1)
其中pooled_std是合并标准差,考虑了各组样本量和方差。
注意事项
- 输入数据应该是两组独立的连续变量
- 函数不会自动处理缺失值,需要提前处理
- 对于配对样本,应该使用
paired=True参数 - 结果解释:0.2为小效应,0.5为中等效应,0.8为大效应
与其他软件的比较
与R的effsize包相比,Pingouin的计算结果在正确使用的情况下应该是一致的。差异可能来自:
- 缺失值处理方式不同
- 分组定义方式不同
- 计算精度差异
通过正确使用Pingouin库的效应量计算功能,研究者可以在Python环境中获得与R一致的统计分析结果。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 Python开发者的macOS终极指南:VSCode安装配置全攻略 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 STM32到GD32项目移植完全指南:从兼容性到实战技巧
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
404
3.14 K
Ascend Extension for PyTorch
Python
224
250
暂无简介
Dart
672
159
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
319
React Native鸿蒙化仓库
JavaScript
262
325
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
657
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
220