Pingouin库中ttest函数使用差异解析
2025-07-08 12:47:46作者:裴锟轩Denise
问题背景
在使用Python统计库Pingouin进行两组数据比较时,用户发现使用不同方法调用ttest函数会得到截然不同的结果。具体表现为:
- 直接使用
pg.ttest(df["Skupina"], df["masa"])
得到显著差异结果(p=0.000327) - 使用SciPy的
ttest_ind
或Pingouin的另一种调用方式得到不显著结果(p=0.2097)
这种差异引起了用户的困惑,因为从数据分布图(小提琴图)来看,两组数据确实存在较大重叠。
技术解析
函数调用方式的本质区别
Pingouin库的ttest
函数实际上是一个多功能入口,根据输入参数的不同会自动执行不同类型的t检验:
-
错误调用方式:
pg.ttest(df["Skupina"], df["masa"])
- 这种调用方式实际上执行的是单样本t检验
- 函数将第一参数
df["Skupina"]
解释为分组变量,第二参数df["masa"]
解释为待检验数据 - 相当于检验"masa"列数据是否与"Skupina"列数值(0或1)有显著差异
- 这显然不是用户想要的分析目的
-
正确调用方式:
group1 = df[df["Skupina"] == 1]["masa"] group2 = df[df["Skupina"] == 2]["masa"] pg.ttest(group1, group2)
- 这种调用明确指定了两个独立样本组
- 执行的是标准的独立样本t检验
- 结果与SciPy的
ttest_ind
一致
统计检验选择的重要性
这个案例凸显了统计检验中选择正确方法的重要性:
- 单样本t检验:用于比较样本均值与已知值(理论值/标准值)的差异
- 独立样本t检验:用于比较两个独立组别间的均值差异
用户最初的使用方式无意中执行了单样本检验,导致结果解释完全错误。
解决方案
Pingouin库提供了多种更安全的调用方式:
-
明确分组方式:
pg.ttest(group1, group2)
-
使用DataFrame友好接口:
pg.pairwise_tests(data=df, dv="masa", between="Skupina")
-
参数化调用:
pg.ttest(x=group1, y=group2, paired=False)
最佳实践建议
- 数据检查:在进行检验前,先绘制数据分布图(如小提琴图/箱线图)
- 明确检验类型:清楚自己要执行的是单样本、配对样本还是独立样本t检验
- 结果验证:对于重要分析,使用不同方法/工具交叉验证结果
- 参数说明:在代码中添加注释说明检验的目的和类型
- 效应量报告:不仅报告p值,还应报告效应量(如Cohen's d)和置信区间
总结
这个案例展示了统计软件使用中一个常见陷阱——函数的多义性可能导致错误的分析结果。Pingouin库虽然提供了便捷的统计分析功能,但也需要用户准确理解函数参数的含义。正确的做法是:
- 明确分析目的
- 选择适当的检验方法
- 使用明确的参数传递方式
- 对结果进行多角度验证
统计分析的可靠性不仅取决于工具的选择,更取决于使用者的正确理解和恰当应用。
登录后查看全文
热门项目推荐
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GLM-V
GLM-4.5V and GLM-4.1V-Thinking: Towards Versatile Multimodal Reasoning with Scalable Reinforcement LearningPython00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0107AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile010
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp课程中屏幕放大器知识点优化分析2 freeCodeCamp Cafe Menu项目中link元素的void特性解析3 freeCodeCamp英语课程填空题提示缺失问题分析4 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 5 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析6 freeCodeCamp全栈开发课程中React实验项目的分类修正7 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析8 freeCodeCamp博客页面工作坊中的断言方法优化建议9 freeCodeCamp论坛排行榜项目中的错误日志规范要求10 freeCodeCamp课程页面空白问题的技术分析与解决方案
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
209
2.21 K

暂无简介
Dart
520
115

Ascend Extension for PyTorch
Python
64
94

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
552
87

React Native鸿蒙化仓库
C++
209
285

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
978
577

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

openGauss kernel ~ openGauss is an open source relational database management system
C++
147
194