Pingouin库中ttest函数使用差异解析
2025-07-08 16:22:26作者:裴锟轩Denise
问题背景
在使用Python统计库Pingouin进行两组数据比较时,用户发现使用不同方法调用ttest函数会得到截然不同的结果。具体表现为:
- 直接使用
pg.ttest(df["Skupina"], df["masa"])得到显著差异结果(p=0.000327) - 使用SciPy的
ttest_ind或Pingouin的另一种调用方式得到不显著结果(p=0.2097)
这种差异引起了用户的困惑,因为从数据分布图(小提琴图)来看,两组数据确实存在较大重叠。
技术解析
函数调用方式的本质区别
Pingouin库的ttest函数实际上是一个多功能入口,根据输入参数的不同会自动执行不同类型的t检验:
-
错误调用方式:
pg.ttest(df["Skupina"], df["masa"])- 这种调用方式实际上执行的是单样本t检验
- 函数将第一参数
df["Skupina"]解释为分组变量,第二参数df["masa"]解释为待检验数据 - 相当于检验"masa"列数据是否与"Skupina"列数值(0或1)有显著差异
- 这显然不是用户想要的分析目的
-
正确调用方式:
group1 = df[df["Skupina"] == 1]["masa"] group2 = df[df["Skupina"] == 2]["masa"] pg.ttest(group1, group2)- 这种调用明确指定了两个独立样本组
- 执行的是标准的独立样本t检验
- 结果与SciPy的
ttest_ind一致
统计检验选择的重要性
这个案例凸显了统计检验中选择正确方法的重要性:
- 单样本t检验:用于比较样本均值与已知值(理论值/标准值)的差异
- 独立样本t检验:用于比较两个独立组别间的均值差异
用户最初的使用方式无意中执行了单样本检验,导致结果解释完全错误。
解决方案
Pingouin库提供了多种更安全的调用方式:
-
明确分组方式:
pg.ttest(group1, group2) -
使用DataFrame友好接口:
pg.pairwise_tests(data=df, dv="masa", between="Skupina") -
参数化调用:
pg.ttest(x=group1, y=group2, paired=False)
最佳实践建议
- 数据检查:在进行检验前,先绘制数据分布图(如小提琴图/箱线图)
- 明确检验类型:清楚自己要执行的是单样本、配对样本还是独立样本t检验
- 结果验证:对于重要分析,使用不同方法/工具交叉验证结果
- 参数说明:在代码中添加注释说明检验的目的和类型
- 效应量报告:不仅报告p值,还应报告效应量(如Cohen's d)和置信区间
总结
这个案例展示了统计软件使用中一个常见陷阱——函数的多义性可能导致错误的分析结果。Pingouin库虽然提供了便捷的统计分析功能,但也需要用户准确理解函数参数的含义。正确的做法是:
- 明确分析目的
- 选择适当的检验方法
- 使用明确的参数传递方式
- 对结果进行多角度验证
统计分析的可靠性不仅取决于工具的选择,更取决于使用者的正确理解和恰当应用。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
278
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
223
302
Ascend Extension for PyTorch
Python
105
135
暂无简介
Dart
568
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
599
164
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
448
openGauss kernel ~ openGauss is an open source relational database management system
C++
154
205
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
280
26