kube-prometheus-stack中APIServer监控面板异常问题分析
问题背景
在使用kube-prometheus-stack进行Kubernetes集群监控时,API Server仪表板的部分面板出现"无数据"的异常情况。这个问题源于该chart对某些Prometheus指标的bucket过滤配置与预设告警规则之间存在不兼容性。
技术细节分析
kube-prometheus-stack为了降低指标基数,默认配置中会对部分Kubernetes指标进行bucket过滤。具体来说,在values.yaml配置文件中,apiserver_request_sli_duration_seconds指标的30.0 bucket被移除了。这种优化措施本意是合理的,因为过于细粒度的bucket会导致Prometheus存储压力增大。
然而,Kubernetes API Server仪表板中的多个面板依赖于预设的Prometheus告警规则,这些规则的计算逻辑中包含了30.0 bucket的引用。当这个bucket被移除后,相关查询就会返回空值,导致面板显示"无数据"。
影响范围
受此问题影响的主要是API Server可用性相关的监控面板,特别是那些基于SLO(服务等级目标)计算的面板。这些面板对于评估API Server的健康状态和性能表现至关重要。
解决方案
要解决这个问题,需要采取两个关键步骤:
-
配置调整:在values.yaml中修改metricsRelabelings配置,保留30.0 bucket不被过滤。这确保了原始数据的完整性。
-
查询优化:修改相关的Prometheus告警规则,为可能返回空值的查询部分添加默认值处理逻辑。这样可以防止整个查询因为部分数据缺失而失效。
最佳实践建议
对于生产环境,建议:
- 在修改bucket过滤配置前,充分评估指标基数和存储成本
- 对关键业务指标的过滤要特别谨慎
- 定期检查仪表板功能是否正常
- 考虑使用Recording Rules来预计算复杂查询,减轻Prometheus负担
总结
这个问题展示了监控系统配置中优化措施与功能需求之间的平衡考量。在实际运维中,我们需要在降低系统负载和保证监控功能完整性之间找到合适的平衡点。通过合理的配置调整和查询优化,可以既控制指标基数,又确保关键监控功能的可用性。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C064
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00