kube-prometheus-stack中APIServer监控面板异常问题分析与解决方案
问题背景
在Kubernetes监控体系中,kube-prometheus-stack是一个广泛使用的监控解决方案,它集成了Prometheus、Grafana以及相关的监控规则和仪表盘。近期发现,在使用该工具监控Kubernetes API Server时,仪表盘中的部分可用性面板会出现"无数据"的异常情况。
问题根源分析
经过深入排查,发现问题的根源在于kube-prometheus-stack的默认配置中,对apiserver_request_sli_duration_seconds
指标进行了桶(bucket)的裁剪。具体来说,配置中移除了包括30.0秒在内的多个桶区间。这一设计原本是为了降低高基数(high cardinality)指标带来的存储和计算压力。
然而,这一优化措施意外影响了API Server仪表盘中的可用性计算。因为这些面板依赖的Prometheus规则中,部分查询逻辑是基于30.0秒这个特定的桶区间进行计算。当这个桶被移除后,相关查询就会返回空值,导致仪表盘显示"无数据"。
技术细节解析
-
SLO指标设计:Kubernetes社区为API Server定义了明确的SLO(服务级别目标)指标,其中30秒响应时间是关键阈值之一。这个值来源于Kubernetes社区制定的稳态SLO标准。
-
Prometheus直方图机制:在Prometheus的直方图指标中,每个桶(bucket)记录了小于等于该桶值的请求数量。30秒桶对于计算长尾延迟和可用性至关重要。
-
规则依赖:API Server可用性计算规则中,使用了类似
histogram_quantile
的函数,这些计算需要完整的桶分布数据,特别是最大桶(30秒)的存在。
解决方案
要解决这个问题,需要从两个层面进行修复:
-
配置调整:在values.yaml中,修改
prometheus.prometheusSpec.ignoreMetrics
配置,确保不移除apiserver_request_sli_duration_seconds
指标的30.0桶。 -
规则增强:对相关的Prometheus规则进行加固,添加默认值处理逻辑,确保当部分数据缺失时,整个查询不会完全失效。
实施建议
对于正在使用kube-prometheus-stack的用户,建议采取以下步骤:
- 检查当前部署中
apiserver_request_sli_duration_seconds
指标的桶配置 - 根据需要调整ignoreMetrics列表,保留关键的30秒桶
- 考虑升级到包含修复的新版本chart
- 对于自定义仪表盘,添加适当的空值处理逻辑
经验总结
这个案例给我们几个重要的启示:
- 监控指标的裁剪需要谨慎,必须全面评估其对现有仪表盘和告警规则的影响
- 关键SLO指标的桶设计应当遵循社区标准,不宜随意修改
- Prometheus查询规则应当具备一定的容错能力,处理部分数据缺失的情况
通过这个问题,我们也看到Kubernetes监控体系的成熟性和复杂性,合理的配置和持续的维护是保证监控系统可靠性的关键。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









