kube-prometheus-stack中APIServer监控面板异常问题分析与解决方案
问题背景
在Kubernetes监控体系中,kube-prometheus-stack是一个广泛使用的监控解决方案,它集成了Prometheus、Grafana以及相关的监控规则和仪表盘。近期发现,在使用该工具监控Kubernetes API Server时,仪表盘中的部分可用性面板会出现"无数据"的异常情况。
问题根源分析
经过深入排查,发现问题的根源在于kube-prometheus-stack的默认配置中,对apiserver_request_sli_duration_seconds指标进行了桶(bucket)的裁剪。具体来说,配置中移除了包括30.0秒在内的多个桶区间。这一设计原本是为了降低高基数(high cardinality)指标带来的存储和计算压力。
然而,这一优化措施意外影响了API Server仪表盘中的可用性计算。因为这些面板依赖的Prometheus规则中,部分查询逻辑是基于30.0秒这个特定的桶区间进行计算。当这个桶被移除后,相关查询就会返回空值,导致仪表盘显示"无数据"。
技术细节解析
-
SLO指标设计:Kubernetes社区为API Server定义了明确的SLO(服务级别目标)指标,其中30秒响应时间是关键阈值之一。这个值来源于Kubernetes社区制定的稳态SLO标准。
-
Prometheus直方图机制:在Prometheus的直方图指标中,每个桶(bucket)记录了小于等于该桶值的请求数量。30秒桶对于计算长尾延迟和可用性至关重要。
-
规则依赖:API Server可用性计算规则中,使用了类似
histogram_quantile的函数,这些计算需要完整的桶分布数据,特别是最大桶(30秒)的存在。
解决方案
要解决这个问题,需要从两个层面进行修复:
-
配置调整:在values.yaml中,修改
prometheus.prometheusSpec.ignoreMetrics配置,确保不移除apiserver_request_sli_duration_seconds指标的30.0桶。 -
规则增强:对相关的Prometheus规则进行加固,添加默认值处理逻辑,确保当部分数据缺失时,整个查询不会完全失效。
实施建议
对于正在使用kube-prometheus-stack的用户,建议采取以下步骤:
- 检查当前部署中
apiserver_request_sli_duration_seconds指标的桶配置 - 根据需要调整ignoreMetrics列表,保留关键的30秒桶
- 考虑升级到包含修复的新版本chart
- 对于自定义仪表盘,添加适当的空值处理逻辑
经验总结
这个案例给我们几个重要的启示:
- 监控指标的裁剪需要谨慎,必须全面评估其对现有仪表盘和告警规则的影响
- 关键SLO指标的桶设计应当遵循社区标准,不宜随意修改
- Prometheus查询规则应当具备一定的容错能力,处理部分数据缺失的情况
通过这个问题,我们也看到Kubernetes监控体系的成熟性和复杂性,合理的配置和持续的维护是保证监控系统可靠性的关键。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00