开源项目 `reasoning-teacher` 使用教程
1. 项目的目录结构及介绍
reasoning-teacher 项目的目录结构如下:
reasoning-teacher/
├── data/
│ ├── dataset/
│ ├── splits/
│ └── few_shot_cot_prompts/
├── notebooks/
│ ├── example_oai_finetune_cot.ipynb
│ └── results.ipynb
├── scripts/
│ └── custom/
├── src/
├── .gitignore
├── LICENSE
├── README.md
├── acl2023.jpg
├── custom_test.py
├── custom_train.py
├── requirements.txt
├── setup.py
└── setup.sh
目录结构介绍
-
data/: 包含项目使用的数据集和相关数据文件。
- dataset/: 包含12个任务数据集,以统一的json格式组织。
- splits/: 包含MultiArith和Date Understanding的模板化分割。
- few_shot_cot_prompts/: 包含从Wei 2022改编的少样本提示。
-
notebooks/: 包含Jupyter Notebook文件,用于运行OpenAI API实验和生成论文结果。
- example_oai_finetune_cot.ipynb: 演示如何从头到尾运行Fine-tune-CoT。
- results.ipynb: 生成论文中的所有结果表格和图表。
-
scripts/: 包含自定义实验的脚本。
- custom/: 包含用于在GPU上进行自定义实验的脚本。
-
src/: 包含项目的源代码。
-
.gitignore: Git忽略文件。
-
LICENSE: 项目许可证(MIT许可证)。
-
README.md: 项目介绍和使用说明。
-
acl2023.jpg: 项目相关图片。
-
custom_test.py: 自定义测试脚本。
-
custom_train.py: 自定义训练脚本。
-
requirements.txt: 项目依赖包列表。
-
setup.py: 项目设置脚本。
-
setup.sh: 项目设置脚本(Shell脚本)。
2. 项目的启动文件介绍
项目的启动文件主要包括以下几个:
-
custom_train.py: 用于在GPU上进行自定义实验的训练脚本。可以通过运行以下命令启动训练:
python custom_train.py -
custom_test.py: 用于在GPU上进行自定义实验的测试脚本。可以通过运行以下命令启动测试:
python custom_test.py -
notebooks/example_oai_finetune_cot.ipynb: Jupyter Notebook文件,用于演示如何从头到尾运行Fine-tune-CoT。可以通过Jupyter Notebook启动并运行该文件。
3. 项目的配置文件介绍
项目的配置文件主要包括以下几个:
-
requirements.txt: 列出了项目所需的所有Python依赖包。可以通过以下命令安装所有依赖:
pip install -r requirements.txt -
setup.py: 项目的设置脚本,用于安装项目的Python包。可以通过以下命令运行:
python setup.py develop -
setup.sh: 项目的设置脚本(Shell脚本),用于设置项目环境。可以通过以下命令运行:
./setup.sh
这些配置文件和启动文件共同构成了项目的核心运行机制,确保项目能够在不同的环境中顺利运行和测试。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00