开源项目 `gradient-checkpointing` 使用教程
2024-09-14 03:33:52作者:贡沫苏Truman
1. 项目介绍
gradient-checkpointing 是一个用于在训练深度神经网络时节省内存的开源项目。该项目由 Tim Salimans 和 Yaroslav Bulatov 共同开发,通过在计算图中检查点节点并重新计算反向传播过程中的部分图,来减少内存使用。对于前馈神经网络,这种方法可以将内存消耗减少到 O(sqrt(n)),其中 n 是网络的层数,同时只增加约 20% 的计算时间。
2. 项目快速启动
安装依赖
首先,确保你已经安装了 tf-nightly-gpu、toposort、networkx 和 pytest。你可以通过以下命令安装这些依赖:
pip install tf-nightly-gpu
pip install toposort networkx pytest
使用示例
以下是一个简单的使用示例,展示了如何使用 gradient-checkpointing 来计算梯度:
import tensorflow as tf
from memory_saving_gradients import gradients
# 定义一个简单的模型
x = tf.placeholder(tf.float32, shape=(None, 784))
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
y = tf.matmul(x, W) + b
# 定义损失函数
y_true = tf.placeholder(tf.float32, shape=(None, 10))
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_true, logits=y))
# 使用 gradient-checkpointing 计算梯度
grads = gradients(loss, [W, b], checkpoints='memory')
# 创建会话并运行
sess = tf.Session()
sess.run(tf.global_variables_initializer())
# 假设我们有一些输入数据和标签
input_data = ...
labels = ...
# 计算梯度
grad_values = sess.run(grads, feed_dict={x: input_data, y_true: labels})
3. 应用案例和最佳实践
应用案例
gradient-checkpointing 特别适用于以下场景:
- 训练非常深的神经网络:当模型层数非常多时,传统的反向传播方法可能会导致内存不足。使用
gradient-checkpointing可以显著减少内存使用。 - 使用大批次数据:在大批次数据训练时,内存消耗会急剧增加。通过减少内存使用,可以训练更大的批次数据。
最佳实践
- 自动检查点选择:使用
checkpoints='memory'选项可以自动选择检查点,适用于大多数模型。 - 手动检查点选择:对于复杂的模型,可以手动选择检查点节点,以获得更好的性能。
4. 典型生态项目
gradient-checkpointing 可以与其他 TensorFlow 生态项目结合使用,例如:
- TensorFlow Model Optimization Toolkit:用于进一步优化模型的大小和性能。
- TensorFlow Extended (TFX):用于构建和部署生产级的机器学习管道。
通过结合这些工具,可以构建高效且可扩展的深度学习系统。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134