深度学习内存优化利器:Gradient-Checkpointing
2024-09-22 02:54:13作者:尤峻淳Whitney
项目介绍
在深度学习领域,训练非常深的神经网络需要大量的内存资源。为了解决这一问题,Tim Salimans 和 Yaroslav Bulatov 联合开发了这个名为“Gradient-Checkpointing”的开源项目。该项目通过在计算图中设置检查点,并重新计算这些检查点之间的部分,从而在减少内存消耗的同时,仅增加少量的计算时间。对于前馈神经网络,使用该工具可以将模型规模扩大10倍以上,而计算时间仅增加20%。
项目技术分析
内存优化原理
训练深度神经网络时,内存消耗主要来自于反向传播过程中计算损失函数的梯度。通过在计算图中设置检查点,并在反向传播时重新计算检查点之间的部分,可以显著减少内存消耗。具体来说,对于一个包含 n 层的前馈神经网络,使用检查点技术可以将内存消耗从 O(n) 降低到 O(sqrt(n)),而计算时间仅增加一个额外的正向传播过程。
实现细节
该项目在 TensorFlow 中实现了这一功能,利用 TensorFlow 的图编辑器自动重写反向传播的计算图。对于包含单节点图分隔符的简单前馈网络,项目自动选择每 sqrt(n) 个节点作为检查点,从而实现 O(sqrt(n)) 的内存消耗。对于更复杂的图结构,用户需要手动选择检查点。
项目及技术应用场景
应用场景
- 大规模深度神经网络训练:在内存资源有限的情况下,使用该工具可以训练更大规模的神经网络,适用于图像识别、自然语言处理等任务。
- 资源受限环境:在GPU内存有限的情况下,通过减少内存消耗,可以在同一硬件上训练更复杂的模型。
技术应用
- 自动检查点选择:项目提供了自动选择检查点的功能,适用于大多数模型,但用户也可以手动选择检查点以应对更复杂的场景。
- 集成到现有框架:项目提供了对 TensorFlow 和 Keras 的集成支持,用户可以通过简单的代码替换,将内存优化功能应用到现有模型中。
项目特点
内存优化
- 显著减少内存消耗:通过检查点技术,将内存消耗从线性增长降低到平方根增长,适用于大规模深度神经网络训练。
- 计算时间增加有限:内存优化带来的计算时间增加仅为一个额外的正向传播过程,适用于对计算时间要求较高的场景。
灵活性
- 自动与手动检查点选择:项目既提供了自动选择检查点的功能,也允许用户手动选择检查点,适用于不同复杂度的模型。
- 集成方便:通过简单的代码替换,用户可以将内存优化功能集成到现有的 TensorFlow 和 Keras 项目中,无需大量修改现有代码。
开源与社区支持
- 开源项目:该项目完全开源,用户可以自由使用、修改和分发。
- 社区支持:项目由资深开发者维护,用户可以通过社区获取帮助和支持。
总结
“Gradient-Checkpointing”项目通过创新的内存优化技术,显著降低了深度神经网络训练的内存消耗,同时仅增加有限的计算时间。无论是大规模深度学习任务,还是在资源受限的环境中,该项目都能为用户提供强大的支持。如果你正在寻找一种有效的方法来优化深度学习模型的内存使用,不妨试试这个开源项目,它可能会为你带来意想不到的惊喜。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
411
3.16 K
Ascend Extension for PyTorch
Python
227
255
暂无简介
Dart
676
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
664
323
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
659
React Native鸿蒙化仓库
JavaScript
265
326
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
220
仓颉编译器源码及 cjdb 调试工具。
C++
135
868