使用Gradient Checkpointing优化PyTorch内存管理
2024-05-20 23:33:09作者:霍妲思
在深度学习的实践中,我们常常受到内存限制,无法训练更复杂的模型或使用更大的批处理大小。为了解决这一问题,我们引入了一个开源项目——PyTorch_Memory_optimizations,它利用了**梯度检查点(Gradient Checkpointing)**技术,通过牺牲计算资源来换取更多的内存空间。
1、项目介绍
这个仓库提供了一系列采用梯度检查点优化的PyTorch模型,包括但不限于ResNet、DenseNet、LSTM和VNet(一种常用于医疗成像的应用模型)。它展示了如何有效地减少模型在训练过程中的内存消耗,从而使得更大的模型训练成为可能。
2、项目技术分析
梯度检查点是一种内存优化策略,它不保存整个前向传播过程中的中间张量,而是只保留关键节点。在反向传播时,重新计算那些未被保存的中间步骤,以此来节省内存。本项目不仅实现了这一策略,还提供了详细教程,解释了如何在各种模型上应用检查点,并处理特殊层如批量归一化和dropout。
3、项目及技术应用场景
无论你是进行图像分类、语言建模还是医疗影像分析,这个项目都能帮助你在有限的硬件资源下扩大模型规模或增加批处理大小。例如,如果你正试图在GPU内存紧张的情况下训练ResNet或DenseNet,或者希望在大规模语言任务中使用大批次训练LSTM,梯度检查点都是一个值得尝试的解决方案。
4、项目特点
- 易用性:项目提供了详细的教程,即使是对梯度检查点不熟悉的开发者也能快速上手。
- 广泛适用性:支持多种类型的神经网络模型,包括卷积网络、循环网络等。
- 性能与效率平衡:虽然增加了计算负担,但能够显著降低内存使用,允许更大规模的模型训练。
- 兼容性:要求安装PyTorch的最新版本,以确保最佳效果。
为了体验检查点优化的优势,只需安装所需的PyTorch环境并运行提供的测试脚本。通过对比基准模型与检查点优化后的模型,你可以直观地看到内存使用的差异。
# 运行检查点优化的模型
python test_memory_optimized.py
# 运行基础模型
python test_memory_optimized.py
总的来说,PyTorch_Memory_optimizations是一个强大的工具,对于任何寻求提高内存效率的PyTorch开发者来说,它都是一个不可或缺的资源。立即加入,发掘你的深度学习模型潜力吧!
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
186
200
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
480
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
281
100
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
381
3.51 K
暂无简介
Dart
625
141
React Native鸿蒙化仓库
JavaScript
242
315
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
openGauss kernel ~ openGauss is an open source relational database management system
C++
158
210