LMDeploy项目:解决Qwen2.5-32B模型在24G显存设备上的OOM问题
问题背景
在使用LMDeploy项目部署Qwen2.5-32B大语言模型时,许多用户遇到了显存不足的问题。特别是在24G显存的RTX 3090/4090显卡上,当尝试运行AWQ量化后的Qwen2.5-32B模型时,会出现CUDA内存不足的错误。这个问题从LMDeploy 0.6.0版本开始出现,而在0.5.3版本中却能正常运行。
问题分析
该问题主要表现为在模型加载阶段就出现显存溢出(OOM),即使模型已经经过AWQ量化处理。通过错误日志分析,问题发生在TurboMind引擎初始化阶段,具体是在内存分配时失败。这表明虽然模型本身已经量化,但在加载过程中仍然需要额外的临时内存空间。
技术细节
-
AWQ量化:AWQ(Activation-aware Weight Quantization)是一种先进的量化技术,它能在保持模型性能的同时显著减少模型大小。对于Qwen2.5-32B这样的超大模型,4-bit AWQ量化理论上应该能在24G显存设备上运行。
-
运行时转换:从LMDeploy 0.6.0开始,引擎在运行时进行模型转换的方式有所改变,这会导致额外的显存占用且未能及时释放,从而引发OOM问题。
-
显存管理:现代GPU显存管理需要考虑模型参数、中间激活值、KV缓存等多个因素。即使量化减少了参数大小,引擎初始化时的临时缓冲区也可能成为瓶颈。
解决方案
经过项目维护者和社区成员的探索,找到了以下有效解决方案:
-
预转换模型格式:在运行服务前,先使用
lmdeploy convert命令将模型转换为TurboMind格式。这种方法避免了运行时的转换开销,显著减少了显存需求。 -
**具体操作步骤:
# 第一步:量化模型 lmdeploy lite auto_awq /Qwen2.5-32B-Instruct \ --calib-dataset 'ptb' \ --calib-samples 128 \ --calib-seqlen 1024 \ --w-bits 4 \ --w-group-size 128 \ --batch-size 8 \ --search-scale True \ --work-dir /Qwen2.5-32B-Instruct-int4 # 第二步:转换为TurboMind格式 lmdeploy convert /Qwen2.5-32B-Instruct-int4 # 第三步:运行API服务 lmdeploy serve api_server /Qwen2.5-32B-Instruct-int4 \ --server-port 9000 \ --session-len 8000 \ --quant-policy 4
最佳实践建议
-
对于大模型部署:始终建议先进行模型格式转换,再运行服务,特别是当显存资源紧张时。
-
版本选择:如果项目允许,可以考虑使用0.5.3版本,该版本在此场景下表现更稳定。
-
资源监控:在部署前,使用
nvidia-smi等工具监控显存使用情况,帮助诊断问题。 -
量化参数优化:可以尝试调整AWQ量化的参数(如w-group-size),找到性能和显存占用的最佳平衡点。
总结
通过预转换模型格式的方法,成功解决了Qwen2.5-32B大模型在24G显存设备上的部署问题。这个案例也提醒我们,在大模型部署过程中,不仅要关注模型本身的显存需求,还需要考虑框架运行时可能带来的额外开销。LMDeploy项目团队正在持续优化显存管理策略,未来版本有望提供更高效的部署体验。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00