首页
/ YOLOv10与YOLOv8在TRT加速下的性能对比分析

YOLOv10与YOLOv8在TRT加速下的性能对比分析

2025-05-22 23:58:05作者:邬祺芯Juliet

引言

目标检测模型在实际应用中的推理速度至关重要。本文针对YOLOv10和YOLOv8模型在TensorRT加速环境下的性能表现进行了深入测试和分析,特别关注了不同尺寸模型在预处理、推理和后处理各阶段的耗时差异。

测试环境与方法

测试平台采用NVIDIA 3070Ti显卡,使用TensorRT加速引擎。测试视频分辨率为1080p,模型输入尺寸分别测试了640x640和1280x1280两种规格。测试脚本基于Ultralytics框架实现,确保两种模型的测试条件完全一致。

性能测试结果

基础模型对比

在640x640输入尺寸下:

  • YOLOv8l模型:整体耗时7.8ms(预处理1.2ms + 推理6.0ms + 后处理0.6ms),FPS达到110.45
  • YOLOv10l模型:整体耗时7.3ms(预处理1.2ms + 推理5.8ms + 后处理0.3ms),FPS提升至126.74
  • YOLOv10x模型:整体耗时8.7ms(预处理1.3ms + 推理7.1ms + 后处理0.3ms),FPS为103.70

高分辨率测试

在1280x1280输入尺寸下:

  • YOLOv8模型:61 FPS
  • YOLOv10模型:64 FPS

关键发现与分析

  1. 后处理优化显著:YOLOv10系列模型在后处理阶段展现出明显优势,耗时仅为YOLOv8的一半(0.3ms vs 0.6ms)。这得益于YOLOv10对后处理流程的优化设计。

  2. 推理效率提升:在相同量级模型对比中(l版本),YOLOv10的推理时间比YOLOv8减少了约3.3%,虽然绝对值差异不大,但结合后处理的优化,整体性能提升明显。

  3. 模型规模影响:YOLOv10x虽然参数量更大,但由于架构优化,其性能仍保持在较高水平,仅比YOLOv8l低约6%的FPS,但检测精度有显著提升。

  4. 分辨率适应性:在高分辨率输入下,YOLOv10的优势更为明显,FPS差距从640尺寸下的约15%扩大到了1280尺寸下的约5%。

技术实现建议

  1. TensorRT优化:在模型导出为TensorRT引擎时,建议设置适当的工作空间大小(如8GB),并启用FP16精度加速,这对两种模型都能带来显著的性能提升。

  2. 后处理优化:对于实时性要求高的应用,可以优先考虑YOLOv10系列,其后处理优化带来的性能提升在边缘设备上可能更为明显。

  3. 模型选择策略

    • 追求极致速度:YOLOv10n/s
    • 平衡精度速度:YOLOv10l
    • 追求最高精度:YOLOv10x

结论

YOLOv10在保持与YOLOv8相近推理速度的同时,通过优化后处理流程和模型架构,实现了整体性能的提升。特别是在高分辨率输入和边缘计算场景下,YOLOv10的优势更为明显。实际应用中,开发者应根据具体需求在模型精度和推理速度之间做出权衡选择。

登录后查看全文
热门项目推荐
相关项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
22
6
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
208
285
pytorchpytorch
Ascend Extension for PyTorch
Python
59
94
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
973
574
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
ops-mathops-math
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399
communitycommunity
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27
MateChatMateChat
前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。 官网地址:https://matechat.gitcode.com
1.2 K
133