首页
/ YOLOv10与YOLOv8在TRT加速下的性能对比分析

YOLOv10与YOLOv8在TRT加速下的性能对比分析

2025-05-22 05:17:18作者:邬祺芯Juliet

引言

目标检测模型在实际应用中的推理速度至关重要。本文针对YOLOv10和YOLOv8模型在TensorRT加速环境下的性能表现进行了深入测试和分析,特别关注了不同尺寸模型在预处理、推理和后处理各阶段的耗时差异。

测试环境与方法

测试平台采用NVIDIA 3070Ti显卡,使用TensorRT加速引擎。测试视频分辨率为1080p,模型输入尺寸分别测试了640x640和1280x1280两种规格。测试脚本基于Ultralytics框架实现,确保两种模型的测试条件完全一致。

性能测试结果

基础模型对比

在640x640输入尺寸下:

  • YOLOv8l模型:整体耗时7.8ms(预处理1.2ms + 推理6.0ms + 后处理0.6ms),FPS达到110.45
  • YOLOv10l模型:整体耗时7.3ms(预处理1.2ms + 推理5.8ms + 后处理0.3ms),FPS提升至126.74
  • YOLOv10x模型:整体耗时8.7ms(预处理1.3ms + 推理7.1ms + 后处理0.3ms),FPS为103.70

高分辨率测试

在1280x1280输入尺寸下:

  • YOLOv8模型:61 FPS
  • YOLOv10模型:64 FPS

关键发现与分析

  1. 后处理优化显著:YOLOv10系列模型在后处理阶段展现出明显优势,耗时仅为YOLOv8的一半(0.3ms vs 0.6ms)。这得益于YOLOv10对后处理流程的优化设计。

  2. 推理效率提升:在相同量级模型对比中(l版本),YOLOv10的推理时间比YOLOv8减少了约3.3%,虽然绝对值差异不大,但结合后处理的优化,整体性能提升明显。

  3. 模型规模影响:YOLOv10x虽然参数量更大,但由于架构优化,其性能仍保持在较高水平,仅比YOLOv8l低约6%的FPS,但检测精度有显著提升。

  4. 分辨率适应性:在高分辨率输入下,YOLOv10的优势更为明显,FPS差距从640尺寸下的约15%扩大到了1280尺寸下的约5%。

技术实现建议

  1. TensorRT优化:在模型导出为TensorRT引擎时,建议设置适当的工作空间大小(如8GB),并启用FP16精度加速,这对两种模型都能带来显著的性能提升。

  2. 后处理优化:对于实时性要求高的应用,可以优先考虑YOLOv10系列,其后处理优化带来的性能提升在边缘设备上可能更为明显。

  3. 模型选择策略

    • 追求极致速度:YOLOv10n/s
    • 平衡精度速度:YOLOv10l
    • 追求最高精度:YOLOv10x

结论

YOLOv10在保持与YOLOv8相近推理速度的同时,通过优化后处理流程和模型架构,实现了整体性能的提升。特别是在高分辨率输入和边缘计算场景下,YOLOv10的优势更为明显。实际应用中,开发者应根据具体需求在模型精度和推理速度之间做出权衡选择。

登录后查看全文
热门项目推荐
相关项目推荐

热门内容推荐

最新内容推荐

项目优选

收起
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
176
261
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
860
511
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300
ShopXO开源商城ShopXO开源商城
🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K
HarmonyOS-ExamplesHarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371
note-gennote-gen
一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0
kernelkernel
deepin linux kernel
C
22
5