Text-Embeddings-Inference 高基数指标问题分析与解决方案
2025-06-24 17:48:23作者:平淮齐Percy
在分布式机器学习系统中,监控指标的高基数问题是一个常见的性能挑战。本文以Text-Embeddings-Inference项目v0.6.0版本中出现的te_batch_next_tokens_bucket指标异常为例,深入分析高基数指标问题的成因、影响及解决方案。
问题现象
在Text-Embeddings-Inference的监控系统中,te_batch_next_tokens_bucket指标出现了异常的高基数现象。正常情况下,这类直方图指标应该只有少量预定义的桶(bucket),但实际观察到该指标产生了约10万个时间序列,其中le标签值显示为1697、1660、1696等大量离散值。
技术背景
Prometheus监控系统中,直方图类型的指标通过_bucket后缀和le标签(表示"小于或等于")来定义数值区间。理想情况下:
- 开发者应预定义一组合理的桶边界
- 每个边界值对应一个时间序列
- 系统自动统计落入各区间的样本数量
问题分析
通过对问题的深入分析,可以确定以下技术要点:
-
指标定义异常:
te_batch_next_tokens_bucket指标本应使用固定的桶边界,但实际实现中可能动态生成了大量边界值 -
性能影响:
- 存储压力:每个唯一标签组合都会创建一个新的时间序列
- 查询效率:高基数指标会显著降低Prometheus查询性能
- 内存消耗:监控系统需要维护大量时间序列的索引
-
问题定位:该问题仅影响特定指标,表明是局部实现问题而非架构设计缺陷
解决方案
Text-Embeddings-Inference团队在v1.0.0版本中通过以下方式解决了该问题:
- 桶边界限制:对直方图指标的桶数量进行了严格限制
- 合理预设:使用符合业务特点的固定桶边界值
- 代码审查:确保所有直方图指标都遵循相同的实现规范
最佳实践建议
针对类似系统的监控指标设计,建议:
- 预定义桶边界:根据业务数据的分布特点,预先设计合理的桶边界
- 基数控制:避免使用高基数标签(如ID、哈希值等)作为指标标签
- 性能测试:对监控系统进行压力测试,确保能处理预期的指标量级
- 版本验证:升级后验证指标基数是否符合预期
总结
高基数指标问题在监控系统中不容忽视。Text-Embeddings-Inference项目的这个案例展示了如何通过合理的指标设计和技术改进来解决这类性能问题。对于开发者而言,理解监控指标的实现细节和性能特性,是构建稳定可观测系统的重要基础。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
248
2.46 K
deepin linux kernel
C
24
6
仓颉编译器源码及 cjdb 调试工具。
C++
116
89
React Native鸿蒙化仓库
JavaScript
217
297
暂无简介
Dart
547
119
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.02 K
596
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
410
Ascend Extension for PyTorch
Python
87
118
仓颉编程语言运行时与标准库。
Cangjie
124
102
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
592
123