结构感知Transformer - 为图表示学习带来新视角
2024-06-08 04:37:12作者:薛曦旖Francesca
摘要: 结构感知Transformer(SAT)是一个基于PyTorch Geometric实现的创新性框架,它在标准Transformer的基础上融入了结构信息,通过提取节点为中心的子图表示来增强自我注意力机制。该项目提供了一种简单且灵活的方法,可将任何现有的图神经网络(GNN)用于子图表示,从而系统地提高与基础GNN相比的表现。
项目介绍
结构感知Transformer(SAT)是针对图表示学习的最新进展,由Dexiong Chen、Leslie O'Bray和Karsten Borgwardt在ICML 2022会议上提出。这个开源实现旨在将结构信息纳入到传统的Transformer架构中,以解决传统方法忽视图结构的问题。SAT的核心在于其自注意力层的"结构化",它使用结构提取器(如GNN)来获取每个节点的子图表示,并以此计算注意力权重。
项目技术分析
SAT与标准Transformer的对比
SAT不同于标准Transformer之处在于,它不直接使用原始节点特征进行自注意力计算,而是先利用一个结构提取器(例如-subtree或-subgraph)获取以每个节点为中心的子图表示。然后,这些更新的节点嵌入被用于构建查询矩阵和键矩阵,从而使得注意力机制能够考虑到局部结构信息。
结构提取器
SAT提供了两种结构提取器示例:-subtree和-subgraph。前者通过GNN处理以每个节点为中心的-跳树,后者则对子图进行完全展开并使用GNN对整个子图进行建模。
快速上手
以下是在ZINC数据集上的快速启动代码示例:
# 省略...
dset = datasets.ZINC('./datasets/ZINC', subset=True, split='train')
dset = GraphDataset(dset)
train_loader = DataLoader(dset, batch_size=16, shuffle=True)
model = GraphTransformer(...)
output = model(data)
# 省略...
应用场景
- 化学分子预测:SAT适用于药物发现领域中的分子性质预测任务,例如ZINC数据集上的化学反应预测。
- 社交网络分析:理解用户之间的互动模式和社区结构。
- 代码理解:在OGBG-CODE2等数据集上进行编程语言结构的分类任务。
- 生物信息学:预测蛋白质相互作用和基因网络结构。
项目特点
- 灵活性:可以结合任意GNN作为结构提取器。
- 结构融合:将结构信息直接注入自注意力机制,提高了模型对图结构的理解。
- 易于使用:提供清晰的API和示例脚本,便于快速集成到现有工作流中。
- 可视化:内置模型解释功能,直观展示节点间注意力权重。
对于那些寻求更深入理解和改进图神经网络性能的研究者,结构感知Transformer无疑是一个值得探索的前沿工具。立即安装并开始您的图表示学习旅程吧!
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355