Responder工具中NTLMv2哈希捕获机制解析
Responder作为一款经典的网络认证嗅探工具,在渗透测试和内网安全评估中被广泛使用。其核心功能之一就是捕获NTLMv2认证哈希,但许多使用者会遇到哈希只被捕获一次的情况,这实际上是Responder的一项设计特性。
NTLMv2哈希捕获原理
Responder通过模拟各种网络服务(SMB、HTTP、FTP等)来诱使客户端发起NTLM认证。当客户端尝试连接这些伪造服务时,Responder会截获包含NTLMv2哈希的认证响应。这些哈希值可以被用于离线分析或哈希传递测试。
哈希去重机制
Responder默认启用了智能去重功能,这体现在两个层面:
-
内存中的临时去重:在单次运行期间,Responder会记录已捕获的哈希,避免重复显示相同用户的相同类型哈希
-
持久化存储去重:所有捕获的哈希会被保存在Responder.db这个SQLite数据库中,即使重启工具也会基于此数据库进行去重判断
解决哈希重复捕获问题
对于测试人员需要重复捕获相同哈希的场景,有以下几种解决方案:
-
使用详细模式(-v参数):在启动Responder时添加-v参数,强制显示所有捕获的哈希,包括重复项
-
清理数据库文件:直接删除或重命名logs目录下的Responder.db文件,Responder会在下次启动时创建全新的数据库
-
数据库内容管理:对于高级用户,可以使用SQLite工具直接操作Responder.db数据库,查询或删除特定记录
最佳实践建议
-
在测试环境中,建议始终使用-v参数运行Responder,确保不遗漏任何认证尝试
-
定期备份Responder.db数据库,这些历史记录对后续分析很有价值
-
对于长期运行的Responder实例,可以考虑定期归档旧数据库并创建新库
理解这些机制不仅能解决使用中的困惑,还能帮助测试人员更有效地利用Responder进行安全评估工作。工具的默认行为实际上是为了减少干扰,专注于新发现的凭证,而调试和特定场景测试时则可以通过参数调整来满足不同需求。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00