Responder工具中NTLMv2哈希捕获机制解析
Responder作为一款经典的网络认证嗅探工具,在渗透测试和内网安全评估中被广泛使用。其核心功能之一就是捕获NTLMv2认证哈希,但许多使用者会遇到哈希只被捕获一次的情况,这实际上是Responder的一项设计特性。
NTLMv2哈希捕获原理
Responder通过模拟各种网络服务(SMB、HTTP、FTP等)来诱使客户端发起NTLM认证。当客户端尝试连接这些伪造服务时,Responder会截获包含NTLMv2哈希的认证响应。这些哈希值可以被用于离线分析或哈希传递测试。
哈希去重机制
Responder默认启用了智能去重功能,这体现在两个层面:
-
内存中的临时去重:在单次运行期间,Responder会记录已捕获的哈希,避免重复显示相同用户的相同类型哈希
-
持久化存储去重:所有捕获的哈希会被保存在Responder.db这个SQLite数据库中,即使重启工具也会基于此数据库进行去重判断
解决哈希重复捕获问题
对于测试人员需要重复捕获相同哈希的场景,有以下几种解决方案:
-
使用详细模式(-v参数):在启动Responder时添加-v参数,强制显示所有捕获的哈希,包括重复项
-
清理数据库文件:直接删除或重命名logs目录下的Responder.db文件,Responder会在下次启动时创建全新的数据库
-
数据库内容管理:对于高级用户,可以使用SQLite工具直接操作Responder.db数据库,查询或删除特定记录
最佳实践建议
-
在测试环境中,建议始终使用-v参数运行Responder,确保不遗漏任何认证尝试
-
定期备份Responder.db数据库,这些历史记录对后续分析很有价值
-
对于长期运行的Responder实例,可以考虑定期归档旧数据库并创建新库
理解这些机制不仅能解决使用中的困惑,还能帮助测试人员更有效地利用Responder进行安全评估工作。工具的默认行为实际上是为了减少干扰,专注于新发现的凭证,而调试和特定场景测试时则可以通过参数调整来满足不同需求。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00