Responder工具中NTLMv2哈希捕获机制解析
Responder作为一款经典的网络认证嗅探工具,在渗透测试和内网安全评估中被广泛使用。其核心功能之一就是捕获NTLMv2认证哈希,但许多使用者会遇到哈希只被捕获一次的情况,这实际上是Responder的一项设计特性。
NTLMv2哈希捕获原理
Responder通过模拟各种网络服务(SMB、HTTP、FTP等)来诱使客户端发起NTLM认证。当客户端尝试连接这些伪造服务时,Responder会截获包含NTLMv2哈希的认证响应。这些哈希值可以被用于离线分析或哈希传递测试。
哈希去重机制
Responder默认启用了智能去重功能,这体现在两个层面:
-
内存中的临时去重:在单次运行期间,Responder会记录已捕获的哈希,避免重复显示相同用户的相同类型哈希
-
持久化存储去重:所有捕获的哈希会被保存在Responder.db这个SQLite数据库中,即使重启工具也会基于此数据库进行去重判断
解决哈希重复捕获问题
对于测试人员需要重复捕获相同哈希的场景,有以下几种解决方案:
-
使用详细模式(-v参数):在启动Responder时添加-v参数,强制显示所有捕获的哈希,包括重复项
-
清理数据库文件:直接删除或重命名logs目录下的Responder.db文件,Responder会在下次启动时创建全新的数据库
-
数据库内容管理:对于高级用户,可以使用SQLite工具直接操作Responder.db数据库,查询或删除特定记录
最佳实践建议
-
在测试环境中,建议始终使用-v参数运行Responder,确保不遗漏任何认证尝试
-
定期备份Responder.db数据库,这些历史记录对后续分析很有价值
-
对于长期运行的Responder实例,可以考虑定期归档旧数据库并创建新库
理解这些机制不仅能解决使用中的困惑,还能帮助测试人员更有效地利用Responder进行安全评估工作。工具的默认行为实际上是为了减少干扰,专注于新发现的凭证,而调试和特定场景测试时则可以通过参数调整来满足不同需求。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~057CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









