Transformers Benchmarks 开源项目最佳实践教程
2025-05-26 08:26:45作者:郦嵘贵Just
1. 项目介绍
Transformers Benchmarks 是一个开源项目,旨在测量和比较不同 GPU 上训练 Transformer 模型所能够达到的实际 TeraFLOPS 性能。项目提供了在单 GPU、多 GPU 以及多机环境下的大型 Transformer 模型的性能数据,帮助用户估算训练大规模 Transformer 模型所需的机器时间。项目包括了个人电脑和云实例上的性能数据,并提供了 Jupyter 笔记本供用户在自己的机器和工作负载上进行基准测试。
2. 项目快速启动
要运行 Transformers Benchmarks 项目,您需要安装支持 CUDA 的 PyTorch。以下是在 Docker 环境中快速启动项目的步骤:
# 获取 PyTorch 的最新 Docker 镜像
sudo docker pull nvcr.io/nvidia/pytorch:22.07-py3
# 运行 Docker 容器
sudo docker run --gpus all -it --rm -p 8888:8888 -v ~/:/workspace \
--ipc=host --ulimit memlock=-1 --ulimit stack=67108864 \
nvcr.io/nvidia/pytorch:22.07-py3
# 在 Docker 容器内启动 Jupyter Notebook
jupyter notebook
启动后,您可以在浏览器中通过 http://localhost:8888 访问 Jupyter Notebook,并执行项目中的基准测试笔记本。
3. 应用案例和最佳实践
3.1 理解 Transformer 层性能
通过项目提供的 Jupyter 笔记本,您可以详细理解不同 GPU 上 Transformer 层的性能表现,包括矩阵乘法和向量乘法的性能。
3.2 使用 (多)GPU 训练 BERT 和 GPT-2
项目中的笔记本还提供了使用单 GPU 和多 GPU 训练 BERT 和 GPT-2 模型的实例,这些实例可以帮助您了解如何在不同规模的硬件上优化模型训练。
3.3 微基准测试总结
通过运行 micro_bench.ipynb 笔记本,您可以获得各种微基准测试的 TFLOPS 结果,帮助您评估不同 GPU 的性能。
4. 典型生态项目
Transformers Benchmarks 可以与其他开源项目相结合,以构建更为完整的深度学习工作流。以下是一些典型的生态项目:
- PyTorch: 用于深度学习研究的开源框架。
- Transformers: Hugging Face 提供的用于自然语言处理的 Transformer 模型库。
- Docker: 用于容器化的平台,可以简化项目的部署和运行。
通过结合这些项目,您可以构建一个强大的深度学习环境,用于研究和开发。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
523
3.72 K
Ascend Extension for PyTorch
Python
328
387
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
876
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
187
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
136