Transformers Benchmarks 项目启动与配置教程
2025-05-26 08:01:48作者:凌朦慧Richard
1. 项目目录结构及介绍
Transformers Benchmarks 项目旨在为不同类型的 GPU 提供实际的 Transformer 模型训练 TeraFLOPS 性能基准。以下是项目的目录结构及其介绍:
transformers-benchmarks/
├── data/ # 存储基准数据
├── imgs/ # 存储项目相关的图像文件
├── LICENSE # 项目许可证文件
├── README.md # 项目说明文件
├── micro_bench.ipynb # 微基准测试的 Jupyter 笔记本
├── transformers.ipynb # Transformer 模型性能测试的 Jupyter 笔记本
data/:该目录包含了用于基准测试的数据文件。imgs/:该目录包含了项目中使用的图像文件,例如图表和性能比较图。LICENSE:Apache-2.0 许可证文件,说明了项目的版权和使用条款。README.md:Markdown 格式的项目介绍文件,提供了项目的概述和相关信息。micro_bench.ipynb:一个 Jupyter 笔记本文件,用于执行微基准测试。transformers.ipynb:一个 Jupyter 笔记本文件,用于测试和评估不同 GPU 上 Transformer 模型的性能。
2. 项目的启动文件介绍
项目的启动主要是通过 Jupyter 笔记本进行的。以下是如何在 Docker 容器中启动 Jupyter 笔记本:
首先,确保你的系统中已经安装了 nvidia-docker。然后,运行以下命令来启动 Docker 容器:
sudo docker run --gpus all -it --rm -p 8888:8888 -v ~/:/workspace \
--ipc=host --ulimit memlock=-1 --ulimit stack=67108864 \
nvcr.io/nvidia/pytorch:22.07-py3
在 Docker 容器运行之后,执行以下命令以打开 Jupyter 笔记本:
jupyter notebook
在浏览器中,你应该能够通过 http://localhost:8888 访问 Jupyter 笔记本界面,并从中选择 micro_bench.ipynb 或 transformers.ipynb 文件开始进行基准测试。
3. 项目的配置文件介绍
本项目主要依赖于环境配置和 Docker 配置。以下是配置的相关说明:
- 环境配置:确保你的系统中安装了 CUDA 和 PyTorch,推荐使用最新版本的 CUDA 和 PyTorch 以获得更好的性能。
- Docker 配置:Docker 容器的运行参数包括挂载当前目录到容器的工作空间,启用 GPU 支持,设置内存和栈的限制等。
项目不需要额外的配置文件,所有的配置都是通过命令行参数和 Jupyter 笔记本中的代码进行设置的。确保在执行任何基准测试之前,你的环境满足项目的要求。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
523
3.72 K
Ascend Extension for PyTorch
Python
329
388
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
188
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
113
136