Hyperspectral_Image_Analysis_Simplified 项目教程
1. 项目介绍
Hyperspectral_Image_Analysis_Simplified 是一个开源项目,旨在简化高光谱图像分析的过程。该项目包含了多种机器学习技术的实现,如分类和聚类,适用于高光谱和卫星图像分析。通过该项目,用户可以轻松地进行高光谱图像的读取、可视化、数据分析以及机器学习模型的应用。
2. 项目快速启动
2.1 环境准备
首先,确保你已经安装了Python环境,并安装了必要的依赖库。你可以使用以下命令安装项目所需的依赖:
pip install -r requirements.txt
2.2 克隆项目
使用以下命令克隆项目到本地:
git clone https://github.com/syamkakarla98/Hyperspectral_Image_Analysis_Simplified.git
cd Hyperspectral_Image_Analysis_Simplified
2.3 运行示例代码
项目中包含多个Jupyter Notebook示例,你可以通过以下命令启动Jupyter Notebook并运行示例代码:
jupyter notebook
打开浏览器,访问Jupyter Notebook界面,选择一个示例Notebook(如Basics.ipynb),运行其中的代码。
3. 应用案例和最佳实践
3.1 高光谱图像的基本操作
在Basics.ipynb中,你可以学习如何下载高光谱图像、读取图像、可视化图像的波段、提取像素以及可视化光谱特征。
3.2 数据分析
在Data_Analysis.ipynb中,你可以学习如何对Indian Pines高光谱图像进行数据分析,包括像素的可视化、类标签的条形图、类标签和波段的箱线图以及波段的分布图。
3.3 探索性数据分析(EDA)
在EDA_on_Satellite_Imagery.ipynb中,你可以学习如何使用EarthPy库对卫星图像进行探索性数据分析。
3.4 降维与分类
在PCA_SVM.ipynb和Kernel_PCA_SVM.ipynb中,你可以学习如何使用PCA和SVM进行降维和分类,并可视化分类结果。
4. 典型生态项目
4.1 EarthPy
EarthPy是一个用于处理地理空间数据的Python库,常用于高光谱图像的预处理和分析。
4.2 scikit-learn
scikit-learn是一个强大的机器学习库,提供了多种分类、聚类和降维算法,适用于高光谱图像的分析。
4.3 TensorFlow
TensorFlow是一个开源的深度学习框架,可以用于构建和训练复杂的机器学习模型,适用于高光谱图像的深度学习任务。
通过结合这些生态项目,你可以进一步扩展和优化高光谱图像分析的能力。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00