Hyperspectral_Image_Analysis_Simplified 项目教程
1. 项目介绍
Hyperspectral_Image_Analysis_Simplified
是一个开源项目,旨在简化高光谱图像分析的过程。该项目包含了多种机器学习技术的实现,如分类和聚类,适用于高光谱和卫星图像分析。通过该项目,用户可以轻松地进行高光谱图像的读取、可视化、数据分析以及机器学习模型的应用。
2. 项目快速启动
2.1 环境准备
首先,确保你已经安装了Python环境,并安装了必要的依赖库。你可以使用以下命令安装项目所需的依赖:
pip install -r requirements.txt
2.2 克隆项目
使用以下命令克隆项目到本地:
git clone https://github.com/syamkakarla98/Hyperspectral_Image_Analysis_Simplified.git
cd Hyperspectral_Image_Analysis_Simplified
2.3 运行示例代码
项目中包含多个Jupyter Notebook示例,你可以通过以下命令启动Jupyter Notebook并运行示例代码:
jupyter notebook
打开浏览器,访问Jupyter Notebook界面,选择一个示例Notebook(如Basics.ipynb
),运行其中的代码。
3. 应用案例和最佳实践
3.1 高光谱图像的基本操作
在Basics.ipynb
中,你可以学习如何下载高光谱图像、读取图像、可视化图像的波段、提取像素以及可视化光谱特征。
3.2 数据分析
在Data_Analysis.ipynb
中,你可以学习如何对Indian Pines高光谱图像进行数据分析,包括像素的可视化、类标签的条形图、类标签和波段的箱线图以及波段的分布图。
3.3 探索性数据分析(EDA)
在EDA_on_Satellite_Imagery.ipynb
中,你可以学习如何使用EarthPy库对卫星图像进行探索性数据分析。
3.4 降维与分类
在PCA_SVM.ipynb
和Kernel_PCA_SVM.ipynb
中,你可以学习如何使用PCA和SVM进行降维和分类,并可视化分类结果。
4. 典型生态项目
4.1 EarthPy
EarthPy是一个用于处理地理空间数据的Python库,常用于高光谱图像的预处理和分析。
4.2 scikit-learn
scikit-learn是一个强大的机器学习库,提供了多种分类、聚类和降维算法,适用于高光谱图像的分析。
4.3 TensorFlow
TensorFlow是一个开源的深度学习框架,可以用于构建和训练复杂的机器学习模型,适用于高光谱图像的深度学习任务。
通过结合这些生态项目,你可以进一步扩展和优化高光谱图像分析的能力。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava03GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0289- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









