Qwen2-VL-72B模型在Video-MME数据集上的性能调优实践
2025-05-23 02:20:38作者:宣聪麟
在视频多模态理解领域,Video-MME数据集已成为评估模型性能的重要基准。近期,我们在使用Qwen2-VL-72B模型进行Video-MME数据集测试时,发现初始结果与官方公布数据存在显著差异。经过深入分析和参数调整,我们最终成功复现了官方报告的性能指标。本文将详细分享这一调优过程和技术要点。
初始测试结果与问题定位
我们最初使用vllm框架运行Qwen2-VL-72B模型时,配置了65536的max_position_embeddings、sliding_window和model_max_length参数。采样参数设置为:
SamplingParams(max_tokens=500, best_of=1, top_k=-1, top_p=1, temperature=0.8)
在此配置下,模型在Video-MME数据集上的无子集准确率(w/o sub ACC)仅为61.59%,与官方报告的71.2%存在近10%的差距。
参数优化过程
经过多次实验验证,我们发现采样参数对模型性能影响显著。特别是以下参数的调整对结果改善至关重要:
- max_tokens:从500增加到2048,确保模型有足够的输出空间
- top_k:从-1(无限制)调整为1,实现确定性采样
- top_p:从1调整为0.0001,大幅降低采样随机性
- temperature:从0.8降至0.01,减少输出的随机波动
- repetition_penalty:保持默认值1.0
最终优化配置与结果
采用优化后的采样参数配置:
SamplingParams(
max_tokens=2048,
top_k=1,
top_p=0.0001,
temperature=0.01,
repetition_penalty=1.0
)
在此配置下,模型在Video-MME-S数据集上的准确率达到了80.1%,与官方Leaderboard公布的结果完全一致。
技术分析与建议
-
采样策略影响:在评估任务中,确定性采样(top_k=1)通常比随机采样更可靠,特别是对于有标准答案的评测任务。
-
温度参数敏感度:较低的温度值(0.01)有效减少了模型输出的随机性,这对于获得稳定的评估结果至关重要。
-
输出长度控制:足够的max_tokens(2048)确保了模型有充分的空间生成完整答案,避免了因长度限制导致的答案截断。
-
实际应用建议:对于生产环境中的创造性任务,可能需要适当提高温度和调整top_p值以增加输出多样性;而对于评估和确定性任务,则应采用更严格的采样控制。
通过这次调优实践,我们验证了采样参数对大型视觉语言模型性能评估的重要影响,也为后续相关工作提供了有价值的参考经验。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00HunyuanWorld-Mirror
混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03Spark-Scilit-X1-13B
FLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
237
2.36 K

仓颉编程语言运行时与标准库。
Cangjie
122
95

暂无简介
Dart
538
117

仓颉编译器源码及 cjdb 调试工具。
C++
114
83

React Native鸿蒙化仓库
JavaScript
216
291

Ascend Extension for PyTorch
Python
77
109

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
995
588

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
568
113

LLVM 项目是一个模块化、可复用的编译器及工具链技术的集合。此fork用于添加仓颉编译器的功能,并支持仓颉编译器项目。
C++
32
25