首页
/ Qwen2-VL-72B模型在Video-MME数据集上的性能调优实践

Qwen2-VL-72B模型在Video-MME数据集上的性能调优实践

2025-05-23 01:12:04作者:宣聪麟

在视频多模态理解领域,Video-MME数据集已成为评估模型性能的重要基准。近期,我们在使用Qwen2-VL-72B模型进行Video-MME数据集测试时,发现初始结果与官方公布数据存在显著差异。经过深入分析和参数调整,我们最终成功复现了官方报告的性能指标。本文将详细分享这一调优过程和技术要点。

初始测试结果与问题定位

我们最初使用vllm框架运行Qwen2-VL-72B模型时,配置了65536的max_position_embeddings、sliding_window和model_max_length参数。采样参数设置为:

SamplingParams(max_tokens=500, best_of=1, top_k=-1, top_p=1, temperature=0.8)

在此配置下,模型在Video-MME数据集上的无子集准确率(w/o sub ACC)仅为61.59%,与官方报告的71.2%存在近10%的差距。

参数优化过程

经过多次实验验证,我们发现采样参数对模型性能影响显著。特别是以下参数的调整对结果改善至关重要:

  1. max_tokens:从500增加到2048,确保模型有足够的输出空间
  2. top_k:从-1(无限制)调整为1,实现确定性采样
  3. top_p:从1调整为0.0001,大幅降低采样随机性
  4. temperature:从0.8降至0.01,减少输出的随机波动
  5. repetition_penalty:保持默认值1.0

最终优化配置与结果

采用优化后的采样参数配置:

SamplingParams(
    max_tokens=2048,
    top_k=1,
    top_p=0.0001,
    temperature=0.01,
    repetition_penalty=1.0
)

在此配置下,模型在Video-MME-S数据集上的准确率达到了80.1%,与官方Leaderboard公布的结果完全一致。

技术分析与建议

  1. 采样策略影响:在评估任务中,确定性采样(top_k=1)通常比随机采样更可靠,特别是对于有标准答案的评测任务。

  2. 温度参数敏感度:较低的温度值(0.01)有效减少了模型输出的随机性,这对于获得稳定的评估结果至关重要。

  3. 输出长度控制:足够的max_tokens(2048)确保了模型有充分的空间生成完整答案,避免了因长度限制导致的答案截断。

  4. 实际应用建议:对于生产环境中的创造性任务,可能需要适当提高温度和调整top_p值以增加输出多样性;而对于评估和确定性任务,则应采用更严格的采样控制。

通过这次调优实践,我们验证了采样参数对大型视觉语言模型性能评估的重要影响,也为后续相关工作提供了有价值的参考经验。

登录后查看全文
热门项目推荐
相关项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
27
11
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
466
3.47 K
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
leetcodeleetcode
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
flutter_flutterflutter_flutter
暂无简介
Dart
715
172
giteagitea
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
kernelkernel
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
203
82
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
695
rainbondrainbond
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1
apintoapinto
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1