Qwen2-VL-72B模型在Video-MME数据集上的性能调优实践
2025-05-23 01:12:04作者:宣聪麟
在视频多模态理解领域,Video-MME数据集已成为评估模型性能的重要基准。近期,我们在使用Qwen2-VL-72B模型进行Video-MME数据集测试时,发现初始结果与官方公布数据存在显著差异。经过深入分析和参数调整,我们最终成功复现了官方报告的性能指标。本文将详细分享这一调优过程和技术要点。
初始测试结果与问题定位
我们最初使用vllm框架运行Qwen2-VL-72B模型时,配置了65536的max_position_embeddings、sliding_window和model_max_length参数。采样参数设置为:
SamplingParams(max_tokens=500, best_of=1, top_k=-1, top_p=1, temperature=0.8)
在此配置下,模型在Video-MME数据集上的无子集准确率(w/o sub ACC)仅为61.59%,与官方报告的71.2%存在近10%的差距。
参数优化过程
经过多次实验验证,我们发现采样参数对模型性能影响显著。特别是以下参数的调整对结果改善至关重要:
- max_tokens:从500增加到2048,确保模型有足够的输出空间
- top_k:从-1(无限制)调整为1,实现确定性采样
- top_p:从1调整为0.0001,大幅降低采样随机性
- temperature:从0.8降至0.01,减少输出的随机波动
- repetition_penalty:保持默认值1.0
最终优化配置与结果
采用优化后的采样参数配置:
SamplingParams(
max_tokens=2048,
top_k=1,
top_p=0.0001,
temperature=0.01,
repetition_penalty=1.0
)
在此配置下,模型在Video-MME-S数据集上的准确率达到了80.1%,与官方Leaderboard公布的结果完全一致。
技术分析与建议
-
采样策略影响:在评估任务中,确定性采样(top_k=1)通常比随机采样更可靠,特别是对于有标准答案的评测任务。
-
温度参数敏感度:较低的温度值(0.01)有效减少了模型输出的随机性,这对于获得稳定的评估结果至关重要。
-
输出长度控制:足够的max_tokens(2048)确保了模型有充分的空间生成完整答案,避免了因长度限制导致的答案截断。
-
实际应用建议:对于生产环境中的创造性任务,可能需要适当提高温度和调整top_p值以增加输出多样性;而对于评估和确定性任务,则应采用更严格的采样控制。
通过这次调优实践,我们验证了采样参数对大型视觉语言模型性能评估的重要影响,也为后续相关工作提供了有价值的参考经验。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
如何让明日方舟干员住进你的桌面?Ark-Pets桌宠神器完整指南5分钟上手screego/server:Docker一键部署与基础配置全攻略告别复杂依赖:在Qt应用中轻松集成stb单文件库 🚀Midscene.js教学案例集:从入门到精通实战项目Splide轮播组件性能基准测试:与其他轮播库的对比分析vue3-element-admin表单设计器:可视化表单配置工具深度学习论文精读终极指南:从GPT到Sora的AI发展脉络解析EfficientDet目标检测可视化:检测结果与特征图可视化实战指南零基础玩转Luckysheet自定义公式:从解析到扩展计算引擎Vim编辑模式终极指南:从入门到精通的10个高效技巧
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
525
3.72 K
Ascend Extension for PyTorch
Python
332
395
暂无简介
Dart
766
189
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
878
586
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
165
React Native鸿蒙化仓库
JavaScript
302
352
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
748
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
985
246