Time-series-classification-and-clustering-with-Reservoir-Computing 项目教程
2024-09-27 00:39:57作者:彭桢灵Jeremy
1. 项目的目录结构及介绍
Time-series-classification-and-clustering-with-Reservoir-Computing/
├── docs/
│ └── ...
├── examples/
│ ├── classification_example.py
│ ├── clustering_example.py
│ └── forecasting_example.py
├── reservoir_computing/
│ ├── __init__.py
│ ├── modules.py
│ └── ...
├── .gitignore
├── LICENSE
├── README.md
└── setup.py
目录结构介绍
- docs/: 存放项目的文档文件,通常包含项目的详细说明、API文档等。
- examples/: 包含项目的示例代码,如分类、聚类和预测的示例脚本。
classification_example.py: 分类示例脚本。clustering_example.py: 聚类示例脚本。forecasting_example.py: 预测示例脚本。
- reservoir_computing/: 项目的主要代码库,包含实现水库计算模型的核心模块。
__init__.py: 初始化文件,使该目录成为一个Python包。modules.py: 包含水库计算模型的核心实现代码。
- .gitignore: Git的忽略文件,指定哪些文件或目录不需要被Git管理。
- LICENSE: 项目的开源许可证文件,通常为MIT许可证。
- README.md: 项目的介绍文件,通常包含项目的概述、安装说明、使用方法等。
- setup.py: 项目的安装脚本,用于安装项目的依赖和打包项目。
2. 项目的启动文件介绍
项目的启动文件通常是指用于启动项目或运行示例代码的文件。在本项目中,启动文件主要是位于examples/目录下的示例脚本。
示例脚本介绍
- classification_example.py: 该脚本展示了如何使用水库计算模型进行时间序列分类。通过运行该脚本,用户可以了解如何加载数据、训练模型以及进行预测。
- clustering_example.py: 该脚本展示了如何使用水库计算模型进行时间序列聚类。通过运行该脚本,用户可以了解如何生成时间序列的表示,并使用这些表示进行聚类分析。
- forecasting_example.py: 该脚本展示了如何使用水库计算模型进行时间序列预测。通过运行该脚本,用户可以了解如何训练预测模型并生成未来的时间序列值。
如何运行示例脚本
- 克隆项目到本地:
git clone https://github.com/FilippoMB/Time-series-classification-and-clustering-with-Reservoir-Computing.git - 进入项目目录:
cd Time-series-classification-and-clustering-with-Reservoir-Computing - 运行示例脚本:
python examples/classification_example.py
3. 项目的配置文件介绍
在本项目中,主要的配置文件是setup.py,它用于安装项目的依赖和打包项目。
setup.py 文件介绍
setup.py 是一个标准的Python安装脚本,通常包含以下内容:
- 项目元数据:如项目名称、版本号、作者、许可证等。
- 依赖项:列出项目运行所需的Python包。
- 安装命令:定义如何安装项目及其依赖项。
如何使用 setup.py
- 安装项目:
pip install . - 安装开发模式(适用于开发者):
pip install -e .
通过以上步骤,用户可以轻松地安装和使用该项目,并根据示例脚本进行时间序列分类、聚类和预测。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
535
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178