RepVGG 开源项目教程
2024-08-16 23:11:22作者:劳婵绚Shirley
项目介绍
RepVGG 是一个简单但强大的卷积神经网络架构,它具有 VGG 风格的推理时结构,由 3x3 卷积和 ReLU 组成。训练时模型具有多分支拓扑结构,这种训练时和推理时架构的解耦是通过结构重参数化技术实现的。RepVGG 在 ImageNet 上达到了超过 80% 的 top-1 准确率,这是首个达到此水平的简单模型。
项目快速启动
安装依赖
首先,确保你已经安装了必要的依赖库。你可以使用以下命令安装:
pip install -r requirements.txt
下载预训练模型
你可以从项目的 GitHub 页面下载预训练模型权重:
wget https://github.com/megvii-model/RepVGG/releases/download/v1.0/repvgg_model_weights.pth
使用预训练模型进行推理
以下是一个简单的示例,展示如何使用 RepVGG 进行推理:
import torch
from repvgg import create_RepVGG_A0
# 加载预训练模型
model = create_RepVGG_A0(deploy=True)
model.load_state_dict(torch.load('repvgg_model_weights.pth'))
# 设置模型为评估模式
model.eval()
# 示例输入
input_tensor = torch.randn(1, 3, 224, 224)
# 进行推理
with torch.no_grad():
output = model(input_tensor)
print(output)
应用案例和最佳实践
图像分类
RepVGG 可以作为图像分类任务的骨干网络。以下是一个使用 RepVGG 进行图像分类的示例:
import torchvision.transforms as transforms
from torchvision.datasets import ImageNet
from torch.utils.data import DataLoader
# 数据预处理
transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.227, 0.224]),
])
# 加载 ImageNet 数据集
dataset = ImageNet(root='path/to/imagenet', split='val', transform=transform)
dataloader = DataLoader(dataset, batch_size=32, shuffle=True)
# 使用 RepVGG 进行分类
for images, labels in dataloader:
outputs = model(images)
# 进一步处理输出
语义分割
RepVGG 也可以作为语义分割任务的骨干网络。以下是一个使用 RepVGG 作为 PSPNet 骨干网络的示例:
from pspnet import PSPNet
# 构建 PSPNet 模型
pspnet = PSPNet(backbone='RepVGG', num_classes=1000)
# 加载预训练权重
pspnet.load_state_dict(torch.load('pspnet_repvgg_weights.pth'))
# 设置模型为评估模式
pspnet.eval()
# 进行推理
with torch.no_grad():
segmentation_output = pspnet(input_tensor)
典型生态项目
MMDetection
MMDetection 是一个流行的目标检测框架,RepVGG 可以作为其骨干网络使用。以下是一个简单的示例:
from mmdet.models import build_detector
# 构建目标检测模型
config = 'path/to/config.py'
checkpoint = 'path/to/checkpoint.pth'
model = build_detector(config, checkpoint=checkpoint)
# 进行推理
detection_output = model(input_tensor)
MMSegmentation
MMSegmentation 是一个流行的语义分割框架,RepVGG 也可以作为其骨干网络使用。以下是一个简单的示例:
from mmseg.models import build_segmentor
# 构建语义分割模型
config = 'path/to/config.py'
checkpoint =
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库
项目优选
收起
deepin linux kernel
C
24
9
暂无简介
Dart
663
152
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
659
297
Ascend Extension for PyTorch
Python
215
235
React Native鸿蒙化仓库
JavaScript
254
320
仓颉编译器源码及 cjdb 调试工具。
C++
132
866
仓颉编程语言运行时与标准库。
Cangjie
139
874
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.18 K
648
仓颉编程语言开发者文档。
59
818