RepVGG 开源项目教程
2024-08-16 00:14:34作者:劳婵绚Shirley
项目介绍
RepVGG 是一个简单但强大的卷积神经网络架构,它具有 VGG 风格的推理时结构,由 3x3 卷积和 ReLU 组成。训练时模型具有多分支拓扑结构,这种训练时和推理时架构的解耦是通过结构重参数化技术实现的。RepVGG 在 ImageNet 上达到了超过 80% 的 top-1 准确率,这是首个达到此水平的简单模型。
项目快速启动
安装依赖
首先,确保你已经安装了必要的依赖库。你可以使用以下命令安装:
pip install -r requirements.txt
下载预训练模型
你可以从项目的 GitHub 页面下载预训练模型权重:
wget https://github.com/megvii-model/RepVGG/releases/download/v1.0/repvgg_model_weights.pth
使用预训练模型进行推理
以下是一个简单的示例,展示如何使用 RepVGG 进行推理:
import torch
from repvgg import create_RepVGG_A0
# 加载预训练模型
model = create_RepVGG_A0(deploy=True)
model.load_state_dict(torch.load('repvgg_model_weights.pth'))
# 设置模型为评估模式
model.eval()
# 示例输入
input_tensor = torch.randn(1, 3, 224, 224)
# 进行推理
with torch.no_grad():
output = model(input_tensor)
print(output)
应用案例和最佳实践
图像分类
RepVGG 可以作为图像分类任务的骨干网络。以下是一个使用 RepVGG 进行图像分类的示例:
import torchvision.transforms as transforms
from torchvision.datasets import ImageNet
from torch.utils.data import DataLoader
# 数据预处理
transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.227, 0.224]),
])
# 加载 ImageNet 数据集
dataset = ImageNet(root='path/to/imagenet', split='val', transform=transform)
dataloader = DataLoader(dataset, batch_size=32, shuffle=True)
# 使用 RepVGG 进行分类
for images, labels in dataloader:
outputs = model(images)
# 进一步处理输出
语义分割
RepVGG 也可以作为语义分割任务的骨干网络。以下是一个使用 RepVGG 作为 PSPNet 骨干网络的示例:
from pspnet import PSPNet
# 构建 PSPNet 模型
pspnet = PSPNet(backbone='RepVGG', num_classes=1000)
# 加载预训练权重
pspnet.load_state_dict(torch.load('pspnet_repvgg_weights.pth'))
# 设置模型为评估模式
pspnet.eval()
# 进行推理
with torch.no_grad():
segmentation_output = pspnet(input_tensor)
典型生态项目
MMDetection
MMDetection 是一个流行的目标检测框架,RepVGG 可以作为其骨干网络使用。以下是一个简单的示例:
from mmdet.models import build_detector
# 构建目标检测模型
config = 'path/to/config.py'
checkpoint = 'path/to/checkpoint.pth'
model = build_detector(config, checkpoint=checkpoint)
# 进行推理
detection_output = model(input_tensor)
MMSegmentation
MMSegmentation 是一个流行的语义分割框架,RepVGG 也可以作为其骨干网络使用。以下是一个简单的示例:
from mmseg.models import build_segmentor
# 构建语义分割模型
config = 'path/to/config.py'
checkpoint =
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
533
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
342
406
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178