RepVGG 开源项目教程
2024-08-16 12:13:29作者:劳婵绚Shirley
项目介绍
RepVGG 是一个简单但强大的卷积神经网络架构,它具有 VGG 风格的推理时结构,由 3x3 卷积和 ReLU 组成。训练时模型具有多分支拓扑结构,这种训练时和推理时架构的解耦是通过结构重参数化技术实现的。RepVGG 在 ImageNet 上达到了超过 80% 的 top-1 准确率,这是首个达到此水平的简单模型。
项目快速启动
安装依赖
首先,确保你已经安装了必要的依赖库。你可以使用以下命令安装:
pip install -r requirements.txt
下载预训练模型
你可以从项目的 GitHub 页面下载预训练模型权重:
wget https://github.com/megvii-model/RepVGG/releases/download/v1.0/repvgg_model_weights.pth
使用预训练模型进行推理
以下是一个简单的示例,展示如何使用 RepVGG 进行推理:
import torch
from repvgg import create_RepVGG_A0
# 加载预训练模型
model = create_RepVGG_A0(deploy=True)
model.load_state_dict(torch.load('repvgg_model_weights.pth'))
# 设置模型为评估模式
model.eval()
# 示例输入
input_tensor = torch.randn(1, 3, 224, 224)
# 进行推理
with torch.no_grad():
output = model(input_tensor)
print(output)
应用案例和最佳实践
图像分类
RepVGG 可以作为图像分类任务的骨干网络。以下是一个使用 RepVGG 进行图像分类的示例:
import torchvision.transforms as transforms
from torchvision.datasets import ImageNet
from torch.utils.data import DataLoader
# 数据预处理
transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.227, 0.224]),
])
# 加载 ImageNet 数据集
dataset = ImageNet(root='path/to/imagenet', split='val', transform=transform)
dataloader = DataLoader(dataset, batch_size=32, shuffle=True)
# 使用 RepVGG 进行分类
for images, labels in dataloader:
outputs = model(images)
# 进一步处理输出
语义分割
RepVGG 也可以作为语义分割任务的骨干网络。以下是一个使用 RepVGG 作为 PSPNet 骨干网络的示例:
from pspnet import PSPNet
# 构建 PSPNet 模型
pspnet = PSPNet(backbone='RepVGG', num_classes=1000)
# 加载预训练权重
pspnet.load_state_dict(torch.load('pspnet_repvgg_weights.pth'))
# 设置模型为评估模式
pspnet.eval()
# 进行推理
with torch.no_grad():
segmentation_output = pspnet(input_tensor)
典型生态项目
MMDetection
MMDetection 是一个流行的目标检测框架,RepVGG 可以作为其骨干网络使用。以下是一个简单的示例:
from mmdet.models import build_detector
# 构建目标检测模型
config = 'path/to/config.py'
checkpoint = 'path/to/checkpoint.pth'
model = build_detector(config, checkpoint=checkpoint)
# 进行推理
detection_output = model(input_tensor)
MMSegmentation
MMSegmentation 是一个流行的语义分割框架,RepVGG 也可以作为其骨干网络使用。以下是一个简单的示例:
from mmseg.models import build_segmentor
# 构建语义分割模型
config = 'path/to/config.py'
checkpoint =
登录后查看全文
热门项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0123AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
227
2.28 K

暂无简介
Dart
527
116

React Native鸿蒙化仓库
JavaScript
214
288

Ascend Extension for PyTorch
Python
69
101

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
989
586

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
566
102

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

openGauss kernel ~ openGauss is an open source relational database management system
C++
148
197