OpenDiT项目在CIFAR10训练中出现NAN问题的分析与解决方案
2025-07-06 17:23:43作者:咎竹峻Karen
问题背景
在使用OpenDiT项目进行CIFAR10数据集训练时,研究人员发现了一个值得关注的技术问题:在训练过程中出现了损失值变为NAN(非数字)的情况。这个问题在使用混合精度训练(fp16)时尤为明显,即使后来尝试改用bf16混合精度,问题依然存在。
问题表现
具体表现为:
- 训练初期损失值下降正常
- 约在第5个epoch时突然出现NAN
- 损失曲线出现异常波动后无法继续优化
根本原因分析
经过深入排查,发现问题主要由两个因素导致:
-
类别数量不匹配:OpenDiT默认使用ImageNet的1000类设置,而CIFAR10只有10个类别。这种不匹配导致在训练过程中,未被使用的990个类别的概率值变得极小,最终引发数值不稳定。
-
调制内核兼容性问题:项目中的调制内核(modulate kernel)实现在某些特定条件下可能导致数值计算异常。
解决方案
针对上述问题,推荐以下解决方案:
-
显式设置类别数量:在训练命令中添加
--num_classes 10参数,确保模型结构与数据集匹配。 -
谨慎使用调制内核:在CIFAR10这类小规模数据集上,建议暂时禁用调制内核功能,可通过移除
--enable_modulate_kernel参数实现。 -
优化训练配置:
- 适当增大批量大小
- 减小梯度裁剪阈值
- 考虑使用梯度累积技术
完整训练建议配置
基于实际验证,以下配置在CIFAR10上表现稳定:
torchrun --standalone --nproc_per_node=8 train.py \
--model DiT-XL/2 \
--batch_size 36 \
--num_classes 10 \
--mixed_precision bf16 \
--ckpt_every 10000 \
--num_workers 12 \
--enable_layernorm_kernel \
--enable_flashattn
技术启示
这个案例为我们提供了几个重要的深度学习实践启示:
-
模型配置与数据集的匹配性检查:在使用预训练模型或默认配置时,必须确认其与目标数据集的兼容性。
-
数值稳定性监控:在训练初期就应建立完善的数值监控机制,及时发现NAN等异常情况。
-
功能模块的渐进式启用:新项目中建议逐步启用各项优化功能,便于定位问题来源。
OpenDiT团队已注意到这个问题,并计划在项目文档中更新相关说明,帮助用户避免类似问题。对于深度学习从业者而言,理解这类问题的成因和解决方法,将有助于在实际工作中更高效地进行模型训练和调试。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 Python开发者的macOS终极指南:VSCode安装配置全攻略 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 STM32到GD32项目移植完全指南:从兼容性到实战技巧
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
402
3.12 K
Ascend Extension for PyTorch
Python
224
249
暂无简介
Dart
672
159
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
315
React Native鸿蒙化仓库
JavaScript
262
324
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
219