Intel PyTorch扩展中AMP训练出现NaN问题的分析与解决
2025-07-07 12:44:40作者:咎岭娴Homer
问题背景
在使用Intel PyTorch扩展进行混合精度训练(AMP)时,部分开发者遇到了损失值(Loss)变为NaN(非数字)的情况。这个问题出现在使用Intel B580显卡进行训练时,当启用自动混合精度训练后,模型在训练几个迭代后就会出现损失值异常。
问题现象
开发者提供了一个基于ResNet50模型在CIFAR10数据集上的训练示例代码。代码中启用了AMP训练,使用了torch.float16半精度浮点数格式。训练过程中,损失值在几个迭代后突然变为NaN,导致训练无法正常进行。
技术分析
AMP训练原理
自动混合精度(AMP)训练是一种通过结合使用不同精度的浮点数来加速训练过程的技术。在PyTorch中,AMP通常使用float16进行前向传播和反向传播,同时使用float32进行权重更新。这种技术可以显著减少内存使用并提高训练速度,特别是在支持半精度计算的硬件上。
NaN问题的可能原因
- 梯度爆炸:在半精度训练中,数值范围较小,容易发生梯度爆炸
- 不适当的缩放因子:GradScaler的初始缩放因子可能不适合当前模型
- 设备指定问题:GradScaler没有正确指定设备类型
解决方案
经过Intel PyTorch扩展团队的分析和验证,发现问题出在GradScaler的初始化上。正确的做法是在创建GradScaler时明确指定设备类型为"xpu"。
修改前的问题代码
scaler = torch.amp.GradScaler(enabled=use_amp)
修改后的正确代码
scaler = torch.amp.GradScaler(device="xpu", enabled=use_amp)
验证结果
使用修正后的代码进行训练,可以观察到损失值正常下降,不再出现NaN现象。训练过程中损失值从初始的4.3981逐渐下降到1.8135,表明模型正在正常学习。
技术建议
- 始终指定设备:在使用Intel PyTorch扩展时,明确指定所有相关组件的设备类型
- 监控训练过程:定期检查损失值和梯度情况,特别是在使用AMP时
- 调整缩放策略:根据模型特性适当调整GradScaler的参数
- 使用最新文档:Intel PyTorch扩展的API可能会有更新,建议参考最新官方文档
总结
在Intel PyTorch扩展中使用AMP训练时,正确初始化GradScaler是保证训练稳定性的关键步骤。通过明确指定设备类型为"xpu",可以有效避免NaN问题的出现,使混合精度训练能够顺利进行。这个问题也提醒开发者在使用新技术时需要注意API的特定要求,特别是在异构计算环境中。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++043Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0287Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp英语课程填空题提示缺失问题分析2 freeCodeCamp全栈开发课程中React实验项目的分类修正3 freeCodeCamp博客页面工作坊中的断言方法优化建议4 freeCodeCamp课程中屏幕放大器知识点优化分析5 freeCodeCamp课程视频测验中的Tab键导航问题解析6 freeCodeCamp论坛排行榜项目中的错误日志规范要求7 freeCodeCamp音乐播放器项目中的函数调用问题解析8 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析9 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析10 freeCodeCamp课程页面空白问题的技术分析与解决方案
最新内容推荐
PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 OpenSSL 3.3.0资源下载指南:新一代加密库的全面解析与部署教程 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
161
2.05 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

React Native鸿蒙化仓库
C++
198
279

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
535
62

Ascend Extension for PyTorch
Python
50
81

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
950
556

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1 K
397

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
385
19

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
191