NuScenes-devkit 3D点投影到图像的技术解析
2025-07-01 13:51:50作者:殷蕙予
概述
在NuScenes-devkit项目中,3D点到2D图像的投影是一个常见的计算机视觉任务。本文将从技术角度深入分析3D点投影到多相机图像的正确实现方法,特别关注常见的投影错误及其解决方案。
3D点投影的基本原理
3D点到2D图像的投影涉及多个坐标系的转换:
- 全局坐标系:所有3D点的原始坐标系
- 车辆坐标系:以车辆为中心的坐标系
- 相机坐标系:以单个相机为中心的坐标系
- 图像坐标系:最终的2D图像平面
转换过程需要依次应用以下变换:
- 从全局到车辆坐标系的变换
- 从车辆到相机坐标系的变换
- 相机内参矩阵投影
常见错误分析
在实际应用中,开发者常会遇到以下问题:
- 投影点位置异常:同一个3D点在不同相机中出现矛盾的位置(如同时在车辆前后方)
- 坐标系转换错误:旋转矩阵使用不当导致投影位置偏移
- 深度过滤缺失:未过滤相机近处的点导致错误投影
关键技术实现
正确的坐标变换顺序
-
全局到车辆坐标系:
- 减去车辆位置平移
- 应用车辆旋转矩阵的逆
-
车辆到相机坐标系:
- 减去相机相对于车辆的位置偏移
- 应用相机旋转矩阵的逆
-
投影变换:
- 使用相机内参矩阵完成3D到2D的投影
深度过滤的重要性
在相机坐标系中,z轴代表深度。必须过滤掉z值过小的点(通常小于1米),因为这些点:
- 可能位于相机后方
- 投影结果不可靠
- 在实际应用中无意义
实现示例
以下是经过验证的正确实现方法:
def project_point_to_camera(nusc, point, sample_data, min_dist=1.0):
# 获取标定和位姿信息
cs_record = nusc.get('calibrated_sensor', sample_data['calibrated_sensor_token'])
pose_record = nusc.get('ego_pose', sample_data['ego_pose_token'])
# 全局到车辆坐标系
point -= np.array(pose_record['translation'])
point = np.dot(Quaternion(pose_record['rotation']).inverse.rotation_matrix, point)
# 车辆到相机坐标系
point -= np.array(cs_record['translation'])
point = np.dot(Quaternion(cs_record['rotation']).inverse.rotation_matrix, point)
# 深度过滤
if point[2] < min_dist:
return None
# 投影变换
cam_matrix = np.eye(4)
cam_matrix[0:3, 0:3] = cs_record["camera_intrinsic"]
projected = np.dot(cam_matrix, np.array([point[0], point[1], point[2], 1]))
return projected[0:2] / projected[2]
实际应用建议
- 多相机一致性检查:确保同一个3D点在不同相机中的投影位置符合物理规律
- 可视化验证:通过绘制投影点直观检查结果
- 参数调优:根据实际场景调整最小深度阈值
- 性能优化:批量处理点云时使用矩阵运算提高效率
结论
正确实现NuScenes数据集中3D点到2D图像的投影需要严格遵循坐标变换顺序,并加入必要的深度过滤。本文提供的技术方案经过实际验证,能够解决常见的投影异常问题,为基于NuScenes数据集的计算机视觉开发提供可靠基础。
登录后查看全文
热门项目推荐
相关项目推荐
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0118AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PANTONE潘通AI色板库:设计师必备的色彩管理利器 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 WebVideoDownloader:高效网页视频抓取工具全面使用指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
225
2.27 K

React Native鸿蒙化仓库
JavaScript
211
287

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

暂无简介
Dart
526
116

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
986
583

openGauss kernel ~ openGauss is an open source relational database management system
C++
148
197

GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
43
0

ArkUI-X adaptation to Android | ArkUI-X支持Android平台的适配层
C++
39
55

ArkUI-X adaptation to iOS | ArkUI-X支持iOS平台的适配层
Objective-C++
19
44