AnyLoc: 通用视觉地点识别项目教程
2024-09-25 21:10:34作者:谭伦延
1. 项目介绍
AnyLoc 是一个致力于实现通用视觉地点识别(Visual Place Recognition, VPR)的开源项目。该项目的目标是开发一种能够在各种结构化和非结构化环境中工作的技术,适用于广泛的视觉地点识别任务。AnyLoc 项目在 IEEE Robotics and Automation Letters (RA-L) 2023 和 ICRA 2024 上发表,并提供了丰富的代码、演示和文档资源。
2. 项目快速启动
2.1 克隆项目仓库
首先,克隆 AnyLoc 项目仓库到本地:
git clone https://github.com/AnyLoc/AnyLoc.git
cd AnyLoc
2.2 设置 Conda 环境
使用 Conda 创建并激活一个新的环境,然后安装所需的依赖:
conda create -n anyloc python=3.9
conda activate anyloc
bash setup_conda.sh
2.3 运行演示脚本
进入 demo 目录,运行演示脚本以验证安装是否成功:
cd demo
python run_demo.py
3. 应用案例和最佳实践
3.1 使用 AnyLoc-VLAD-DINOv2
AnyLoc-VLAD-DINOv2 是 AnyLoc 项目中的一个先进方法,适用于多种视觉地点识别任务。以下是如何使用该方法的示例代码:
from utilities import DinoV2ExtractFeatures, VLAD
# 初始化 DINOv2 特征提取器
extractor = DinoV2ExtractFeatures("dinov2_vitg14", desc_layer, desc_facet, device=device)
# 获取图像描述符
img_pt = ... # 加载图像并进行预处理
ret = extractor(img_pt)
# 初始化 VLAD 聚合器
vlad = VLAD(num_c, desc_dim=None, cache_dir=os.path.dirname(c_centers_file))
vlad.fit(None) # 加载词汇表
# 生成 VLAD 表示
db_vlads = vlad.generate_multi(full_db)
3.2 验证结果
使用 scripts 目录中的脚本验证 AnyLoc 的结果:
cd scripts
python validate_results.py
4. 典型生态项目
4.1 dvgl-benchmark
dvgl-benchmark 是一个用于深度视觉地理定位基准测试的仓库,AnyLoc 项目中包含了该仓库的克隆版本,用于数据集的下载和格式化。
4.2 datasets-vg
datasets-vg 是另一个重要的生态项目,用于管理和处理视觉地点识别任务中的数据集。
4.3 CosPlace
CosPlace 是一个用于基准比较的仓库,AnyLoc 项目中包含了该仓库的克隆版本,用于与其他方法进行性能对比。
通过这些生态项目,AnyLoc 构建了一个完整的视觉地点识别解决方案,涵盖了从数据处理到模型训练和验证的各个环节。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
479
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
375
3.24 K
Ascend Extension for PyTorch
Python
169
190
暂无简介
Dart
615
140
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
仓颉编译器源码及 cjdb 调试工具。
C++
126
855
仓颉编程语言测试用例。
Cangjie
36
852
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
258