Auto-AVSR:引领视觉语音识别新纪元
2024-09-22 06:50:11作者:滕妙奇
项目介绍
Auto-AVSR 是一个开源的语音识别框架,专注于视觉语音(唇读)的识别。该项目旨在通过端到端的训练方式,提供最先进的模型,并在音频-视觉语音基准测试中实现可重复性。通过使用Auto-AVSR,用户可以在LRS3数据集上实现20.3%的视觉语音识别(VSR)词错误率(WER)和1.0%的音频语音识别(ASR)词错误率。
项目技术分析
Auto-AVSR 的技术架构设计精良,采用了先进的深度学习技术,包括但不限于:
- PyTorch:作为主要的深度学习框架,提供了强大的计算能力和灵活性。
- Fairseq:用于序列到序列模型的训练,支持高效的模型训练和推理。
- PyTorch Lightning:简化了训练流程,使得模型训练更加高效和易于管理。
- SentencePiece:用于处理文本数据,提供了高效的文本编码和解码功能。
此外,Auto-AVSR 还支持多种输入模态,包括视频、音频和音视频结合,能够适应不同的应用场景。
项目及技术应用场景
Auto-AVSR 的应用场景广泛,特别适用于以下领域:
- 辅助听力设备:通过视觉语音识别技术,帮助听力障碍者更好地理解对话内容。
- 视频会议系统:在嘈杂环境中,通过唇读技术提高语音识别的准确性。
- 安全监控:在无声或低音环境中,通过视觉语音识别技术进行监控和分析。
- 教育与培训:用于语言学习或培训中,提高语音识别的准确性和效率。
项目特点
Auto-AVSR 具有以下显著特点:
- 高性能:在LRS3数据集上实现了业界领先的词错误率,证明了其强大的识别能力。
- 端到端训练:支持从数据预处理到模型训练的端到端流程,简化了开发和部署过程。
- 多模态支持:不仅支持视觉语音识别,还支持音频和音视频结合的识别,适应多种应用场景。
- 易于使用:提供了详细的安装和使用指南,用户可以快速上手并进行定制化开发。
- 社区支持:项目开源并鼓励社区贡献,用户可以通过PR或邮件与开发者直接交流。
结语
Auto-AVSR 是一个功能强大且易于使用的开源项目,适用于多种语音识别应用场景。无论你是研究者、开发者还是企业用户,Auto-AVSR 都能为你提供高效、准确的语音识别解决方案。立即访问 Auto-AVSR GitHub 仓库,开始你的语音识别之旅吧!
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
341
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178