Higress 项目中 AI Quota 插件设计与实现
2025-06-09 06:43:07作者:裴麒琰
在当今人工智能应用蓬勃发展的背景下,API 网关作为连接客户端与 AI 服务的关键组件,其配额管理能力显得尤为重要。本文将深入探讨 Higress 项目中 AI Quota 插件的设计与实现思路,为开发者提供一种高效可靠的 AI 服务配额管理方案。
背景与需求分析
随着大语言模型(LLM)应用的普及,企业需要精细化的配额管理机制来控制 API 访问。传统的限流插件虽然能够实现基于时间的访问控制,但无法满足以下典型业务场景:
- 预付费模式:用户购买固定额度的 token 使用量,用完即止
- 配额充值:用户可随时充值增加使用额度
- 配额查询:实时查看剩余可用额度
- 管理员操作:支持对用户配额进行动态调整
这些需求催生了 AI Quota 插件的诞生,它需要与现有的 AI 限流插件形成互补,共同构建完整的 AI 服务访问控制体系。
核心设计思想
AI Quota 插件的设计遵循以下原则:
- 状态持久化:使用 Redis 作为后端存储,确保配额数据在服务重启后不丢失
- 原子操作:利用 Redis 的原子性操作保证并发场景下的数据一致性
- 轻量级管理:通过 RESTful 接口提供配额管理能力,无需额外部署管理服务
- 无缝集成:与 Higress 现有认证体系(如 key-auth)深度集成
技术实现细节
基础配额控制
插件通过 Redis 存储每个消费者的配额信息,键名格式为{prefix}#{consumer_name}。每次 AI 请求处理流程如下:
- 前置检查:从 Redis 获取当前配额值,若≤0则拒绝请求
- 业务处理:转发请求到后端 AI 服务
- 配额扣减:根据响应中的 token 使用量,原子性更新 Redis 中的剩余配额
这种设计确保了即使在并发请求场景下,配额扣减也能保持准确性。
管理接口设计
插件内置了配额管理 API,通过以下端点提供服务:
-
配额刷新:
POST /{base_path}/quota/refresh- 请求体:
consumer=xxx"a=yyy - 功能:将指定消费者的配额重置为指定值
- 请求体:
-
配额查询:
GET /{base_path}/quota?consumer=xxx- 响应:
{"quota": 10000, "consumer": "xxx"}
- 响应:
-
配额调整:
POST /{base_path}/quota/delta- 请求体:
consumer=xxx&value=yyy - 功能:对指定消费者的配额进行增减操作(支持负值)
- 请求体:
这些接口通过配置中的admin_consumer和admin_path参数进行保护,只有指定的管理员消费者才能访问。
典型应用场景
- SaaS 服务配额管理:为不同客户分配固定额度,超额后需购买扩容
- 内部团队资源管控:限制各部门的 AI 资源使用量,实现成本控制
- 开发者平台:为第三方开发者提供可查询、可刷新的 API 调用额度
- 混合计费模式:结合限流插件,实现"固定配额+按时间限流"的混合控制
性能与可靠性考量
在实际部署中,建议:
- 使用 Redis 集群提高可用性和扩展性
- 为配额键设置适当的 TTL,避免长期不活跃用户占用存储空间
- 在高并发场景下,可考虑使用 Lua 脚本优化 Redis 操作
- 实现本地缓存层减少 Redis 访问频率,同时注意缓存一致性问题
总结
Higress 的 AI Quota 插件填补了传统限流方案在固定配额管理方面的空白,为 AI 服务提供了更加灵活的访问控制能力。其与现有认证体系的深度集成和简洁的管理接口设计,使得开发者能够快速构建符合业务需求的配额管理系统。随着 AI 应用的持续发展,这种细粒度的资源管控能力将变得越来越重要。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C086
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python057
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0137
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
472
3.49 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
719
173
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
213
86
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
696
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1