Higress 项目中 AI Quota 插件设计与实现
2025-06-09 00:40:37作者:裴麒琰
在当今人工智能应用蓬勃发展的背景下,API 网关作为连接客户端与 AI 服务的关键组件,其配额管理能力显得尤为重要。本文将深入探讨 Higress 项目中 AI Quota 插件的设计与实现思路,为开发者提供一种高效可靠的 AI 服务配额管理方案。
背景与需求分析
随着大语言模型(LLM)应用的普及,企业需要精细化的配额管理机制来控制 API 访问。传统的限流插件虽然能够实现基于时间的访问控制,但无法满足以下典型业务场景:
- 预付费模式:用户购买固定额度的 token 使用量,用完即止
- 配额充值:用户可随时充值增加使用额度
- 配额查询:实时查看剩余可用额度
- 管理员操作:支持对用户配额进行动态调整
这些需求催生了 AI Quota 插件的诞生,它需要与现有的 AI 限流插件形成互补,共同构建完整的 AI 服务访问控制体系。
核心设计思想
AI Quota 插件的设计遵循以下原则:
- 状态持久化:使用 Redis 作为后端存储,确保配额数据在服务重启后不丢失
- 原子操作:利用 Redis 的原子性操作保证并发场景下的数据一致性
- 轻量级管理:通过 RESTful 接口提供配额管理能力,无需额外部署管理服务
- 无缝集成:与 Higress 现有认证体系(如 key-auth)深度集成
技术实现细节
基础配额控制
插件通过 Redis 存储每个消费者的配额信息,键名格式为{prefix}#{consumer_name}
。每次 AI 请求处理流程如下:
- 前置检查:从 Redis 获取当前配额值,若≤0则拒绝请求
- 业务处理:转发请求到后端 AI 服务
- 配额扣减:根据响应中的 token 使用量,原子性更新 Redis 中的剩余配额
这种设计确保了即使在并发请求场景下,配额扣减也能保持准确性。
管理接口设计
插件内置了配额管理 API,通过以下端点提供服务:
-
配额刷新:
POST /{base_path}/quota/refresh
- 请求体:
consumer=xxx"a=yyy
- 功能:将指定消费者的配额重置为指定值
- 请求体:
-
配额查询:
GET /{base_path}/quota?consumer=xxx
- 响应:
{"quota": 10000, "consumer": "xxx"}
- 响应:
-
配额调整:
POST /{base_path}/quota/delta
- 请求体:
consumer=xxx&value=yyy
- 功能:对指定消费者的配额进行增减操作(支持负值)
- 请求体:
这些接口通过配置中的admin_consumer
和admin_path
参数进行保护,只有指定的管理员消费者才能访问。
典型应用场景
- SaaS 服务配额管理:为不同客户分配固定额度,超额后需购买扩容
- 内部团队资源管控:限制各部门的 AI 资源使用量,实现成本控制
- 开发者平台:为第三方开发者提供可查询、可刷新的 API 调用额度
- 混合计费模式:结合限流插件,实现"固定配额+按时间限流"的混合控制
性能与可靠性考量
在实际部署中,建议:
- 使用 Redis 集群提高可用性和扩展性
- 为配额键设置适当的 TTL,避免长期不活跃用户占用存储空间
- 在高并发场景下,可考虑使用 Lua 脚本优化 Redis 操作
- 实现本地缓存层减少 Redis 访问频率,同时注意缓存一致性问题
总结
Higress 的 AI Quota 插件填补了传统限流方案在固定配额管理方面的空白,为 AI 服务提供了更加灵活的访问控制能力。其与现有认证体系的深度集成和简洁的管理接口设计,使得开发者能够快速构建符合业务需求的配额管理系统。随着 AI 应用的持续发展,这种细粒度的资源管控能力将变得越来越重要。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++095AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
59
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
974
574

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133