Seurat项目中处理Visium空间转录组数据的预标注区域加载方法
2025-07-01 11:46:05作者:范垣楠Rhoda
背景介绍
在空间转录组分析中,病理学家对组织切片进行的手动标注是宝贵的生物学信息来源。Seurat作为单细胞和空间转录组分析的主流工具,如何将QuPath等软件生成的预标注区域整合到分析流程中,是许多研究者面临的挑战。
技术难点
从QuPath导出的GeoJSON格式标注文件直接加载到Seurat对象时,主要存在两个技术难点:
-
坐标系统不匹配:病理标注通常在原始高分辨率图像上完成,而Seurat分析使用的是经过降采样的低分辨率图像,两者之间存在尺度转换问题。
-
数据结构差异:GeoJSON文件中的多边形标注需要转换为Seurat能够识别的空间数据结构,特别是当标注包含多个多边形区域时。
解决方案
1. 数据准备阶段
首先需要从GeoJSON文件中提取标注信息。使用R中的sf包可以高效读取GeoJSON文件:
library(sf)
annotations <- st_read("path/to/annotation.geojson")
对于包含多边形的复杂标注,建议先进行数据验证和简化:
annotations <- st_make_valid(annotations)
2. 坐标转换处理
关键步骤是确定原始高分辨率图像与Seurat使用的低分辨率图像之间的缩放比例。通常可以通过比较两种图像的尺寸来计算缩放因子:
scale_factor <- 低分辨率图像宽度 / 原始图像宽度
然后将标注坐标按比例缩放:
scaled_coords <- st_coordinates(annotations)[, 1:2] * scale_factor
3. 创建Segmentation对象
将转换后的坐标与区域分类信息组合成数据框:
segmentation_df <- data.frame(
x = scaled_coords[,1],
y = scaled_coords[,2],
cell = 区域分类名称
)
使用Seurat的CreateSegmentation函数创建空间对象:
segmentation_obj <- CreateSegmentation(segmentation_df)
4. 整合到Seurat对象
最后将标注区域叠加到现有的空间数据上:
seurat_obj[["custom_annotations"]] <- Overlay(seurat_obj[["slice1"]], segmentation_obj)
常见问题排查
-
"Cannot remove default boundary"错误:
- 检查坐标转换是否正确
- 确认标注区域是否确实包含细胞点
- 尝试简化多边形复杂度
-
标注区域与图像不匹配:
- 验证缩放因子计算
- 检查图像坐标系是否一致
- 考虑手动微调坐标偏移
-
多区域标注处理:
- 将复合多边形拆分为单个区域处理
- 为每个区域单独创建Segmentation对象
- 最后合并结果
最佳实践建议
- 在QuPath中直接对低分辨率图像进行标注可以避免缩放问题
- 对于复杂组织,分区域逐步处理比一次性处理所有标注更可靠
- 可视化检查每个步骤的结果,确保中间数据正确
- 考虑开发自定义函数自动化重复性操作
通过上述方法,研究者可以有效地将病理学家的专业知识整合到Seurat的空间转录组分析流程中,为后续的差异表达分析和空间模式研究提供有价值的区域划分依据。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355